如圖,四棱錐P-ABCD的底面ABCD為一直角梯形,側(cè)面PAD是等邊三角形,其中BA⊥AD,CD⊥AD,CD=2AD=2AB,平面PAD⊥底面ABCD,E是PC的中點.
(1)求證:BE平面PAD;
(2)求證:BE⊥CD;
(3)求BD與平面PDC所成角的正弦值.
(1)證明:如圖,取CD的中點M,連接EM、BM,則四邊形ABMD為矩形
∴EMPD,BMAD;
又∵BM∩EM=M,
∴平面EBM平面APD;
而BE?平面EBM,
∴BE平面PAD;
(2)證明:取PD的中點F,連接FE,則FEDC,BEAF,
又∵DC⊥AD,DC⊥PA,
∴DC⊥平面PAD,
∴DC⊥AF,DC⊥PD,
∴EF⊥AF,
在Rt△PAD中,∵AD=AP,F(xiàn)為PD的中點,
∴AF⊥PD,又AF⊥EF且PD∩EF=F,
∴AF⊥平面PDC,又BEAF,
∴BE⊥平面PDC,
∴CD⊥BE;
(3)∵CD⊥AF,AF⊥PD,CD∩PD=D,
∴AF⊥平面PCD,
連接DE,則∠BDE為BD與平面PDC所成角.
在直角△BDE中,設(shè)AD=AB=a,則BE=AF=
3
2
a
,BD=
2
a,∴sin∠BDE=
BE
BD
=
6
4

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

長方體ABCD-A1B1C1D1中,BB1=BC,P為C1D1上一點,則異面直線PB與B1C所成角的大小( 。
A.是45°B.是60°
C.是90°D.隨P點的移動而變化

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

正方體ABCD-A1B1C1D1的棱長為2,M,N分別為AA1、BB1的中點.
求:(1)CM與D1N所成角的余弦值.
(2)D1N與平面MBC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知二面角α-l-β等于90°,A、B是棱l上兩點,AC、BD分別在半平面α、β內(nèi),AC⊥l,BD⊥l,已知AB=5,AC=3,BD=4,則CD與平面α所成角的正弦值為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在長方體ABCD-A1B1C1D1中,AB=BC=2AA1,則BC1與平面BB1D1D所成角的正弦值為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,PA⊥面ABCD,AB=BC=2,AD=CD=
7
,PA=
3
,∠ABC=120°,G為線段PC的中點.
(1)證明:PA平面BGD;
(2)求直線DG與平面PAC所成的角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在四棱錐P-ABCD中,ABCD為正方形,PA⊥平面ABCD,若PA=AB,則PC與面PAB所成角的余弦值為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖:在直三棱柱ABC-DEF中,AB=2,AC=AD=2
3
,AB⊥AC,
(1)證明:AB⊥DC,
(2)求二面角A-DC-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在棱長為1的正方體ABCD-A1B1C1D1中,P是AC與BD的交點,M是CC1的中點.
(1)求證:A1P⊥平面MBD;
(2)求直線B1M與平面MBD所成角的正弦值;
(3)求平面ABM與平面MBD所成銳角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案