已知函數(shù).

(1)若上的最大值為,求實(shí)數(shù)的值;

(2)若對(duì)任意,都有恒成立,求實(shí)數(shù)的取值范圍;

(3)在(1)的條件下,設(shè),對(duì)任意給定的正實(shí)數(shù),曲線 上是否存在兩點(diǎn)、,使得是以為坐標(biāo)原點(diǎn))為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上?請(qǐng)說(shuō)明理由。

 

【答案】

(1)(2)(3)對(duì)任意給定的正實(shí)數(shù),曲線 上總存在兩點(diǎn),使得是以為坐標(biāo)原點(diǎn))為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上

【解析】

試題分析:(1)由,得,

,得

列表如下:

0

 

0

0

極小值

極大值

,,

即最大值為,.                  4分

(2)由,得

,且等號(hào)不能同時(shí)取,,

恒成立,即

,求導(dǎo)得,,

當(dāng)時(shí),,從而,

上為增函數(shù),,.            8分

(3)由條件,

假設(shè)曲線上存在兩點(diǎn)滿足題意,則只能在軸兩側(cè),

不妨設(shè),則,且

是以為坐標(biāo)原點(diǎn))為直角頂點(diǎn)的直角三角形,

 ,              10分

是否存在等價(jià)于方程時(shí)是否有解.

①若時(shí),方程,化簡(jiǎn)得,

此方程無(wú)解;                            11分

②若時(shí),方程為,即,

設(shè),則,

顯然,當(dāng)時(shí),,即上為增函數(shù),

的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013061409024935233467/SYS201306140903430398749791_DA.files/image067.png">,即,

當(dāng)時(shí),方程總有解.

對(duì)任意給定的正實(shí)數(shù),曲線 上總存在兩點(diǎn),使得是以為坐標(biāo)原點(diǎn))為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上.      14分

考點(diǎn):函數(shù)最值及與之相關(guān)的不等式問(wèn)題

點(diǎn)評(píng):求函數(shù)最值通過(guò)函數(shù)導(dǎo)數(shù)求得極值,比較極值與閉區(qū)間的邊界值的大小得最值,不等式恒成立中求參數(shù)范圍的題目常采用分離參數(shù)法轉(zhuǎn)化為求函數(shù)最值的問(wèn)題

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分12分)已知函數(shù)

(1)若,試確定函數(shù)的單調(diào)區(qū)間;(2)若,且對(duì)于任意,恒成立,試確定實(shí)數(shù)的取值范圍;(3)設(shè)函數(shù),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆寧夏高二上學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分)已知函數(shù),

(1)若,求的單調(diào)區(qū)間;

(2)當(dāng)時(shí),求證:

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年湖南省岳陽(yáng)市高三第一次質(zhì)量檢測(cè)理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分13分)已知函數(shù)

(1)若的極值點(diǎn),求實(shí)數(shù)的值;

(2)若上為增函數(shù),求實(shí)數(shù)的取值范圍;

(3)當(dāng)時(shí),方程有實(shí)根,求實(shí)數(shù)的最大值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年湖北省華中師大一附中高三上學(xué)期期中檢測(cè)文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)。

(1)若,求函數(shù)的值;

(2)求函數(shù)的值域。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:吉林省10-11學(xué)年高二下學(xué)期期末考試數(shù)學(xué)(理) 題型:解答題

已知函數(shù)

(1)若從集合中任取一個(gè)元素,從集合中任取一個(gè)元素,求方程有兩個(gè)不相等實(shí)根的概率;

(2)若是從區(qū)間中任取的一個(gè)數(shù),是從區(qū)間中任取的一個(gè)數(shù),求方程沒(méi)有實(shí)根的概率.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案