已知函數(shù)f(x)=loga(1+x)+loga(1-x)(a>0且a≠1)
(1)判斷函數(shù)y=f(x)的奇偶性,并說明理由.
(2)求函數(shù)y=f(x)的值域.
分析:(1)首先求出f(x)的定義域,利用對數(shù)的運算法則將函數(shù)轉(zhuǎn)化為f(x)=loga(1-x2),再由函數(shù)奇偶性的定義判斷即可.
(2)由函數(shù)的定義域首先求出真數(shù)的范圍,再結合對數(shù)函數(shù)的圖象分a>1和0<a<1兩種情況求值域即可.
解答:解:(1)依題意得
1-x>0
1+x>0
解得-1<x<1
∴f(x)定義域為(-1,1),是關于原點對稱區(qū)間
又f(-x)=f(x)∴f(x)為偶函數(shù).
(2)∵f(x)=loga(1-x2)∵x∈(-1,1),
∴1-x2∈(0,1]
∴當a>1時,值域為(-∞,0]
當0<a<1時,值域為[0,+∞).
點評:本題考查對數(shù)的運算法則、對數(shù)函數(shù)的定義域、值域、奇偶性等問題,同時考查分類討論思想.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2x-2+ae-x(a∈R)
(1)若曲線y=f(x)在點(1,f(1))處的切線平行于x軸,求a的值;
(2)當a=1時,若直線l:y=kx-2與曲線y=f(x)在(-∞,0)上有公共點,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2+2|lnx-1|.
(1)求函數(shù)y=f(x)的最小值;
(2)證明:對任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)對于函數(shù)f(x)圖象上的不同兩點A(x1,y1),B(x2,y2)(x1<x2),如果在函數(shù)f(x)圖象上存在點M(x0,y0)(其中x0∈(x1,x2))使得點M處的切線l∥AB,則稱直線AB存在“伴侶切線”.特別地,當x0=
x1+x2
2
時,又稱直線AB存在“中值伴侶切線”.試問:當x≥e時,對于函數(shù)f(x)圖象上不同兩點A、B,直線AB是否存在“中值伴侶切線”?證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線x+3y-1=0垂直,若數(shù)列{
1
f(n)
}的前n項和為Sn,則S2012的值為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=xlnx
(Ⅰ)求函數(shù)f(x)的極值點;
(Ⅱ)若直線l過點(0,-1),并且與曲線y=f(x)相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)試就實數(shù)a的不同取值,寫出該函數(shù)的單調(diào)增區(qū)間;
(2)已知當x>0時,函數(shù)在(0,
6
)上單調(diào)遞減,在(
6
,+∞)上單調(diào)遞增,求a的值并寫出函數(shù)的解析式;
(3)記(2)中的函數(shù)圖象為曲線C,試問是否存在經(jīng)過原點的直線l,使得l為曲線C的對稱軸?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案