已知橢圓的中心在原點,焦點在軸上,右準線的方程為,傾斜角為的直線交橢圓兩點,且的中點坐標為,設(shè)為橢圓的右頂點,為橢圓上兩點,且,,三者的平方成等差數(shù)列,則直線斜率之積的絕對值是否為定值,若是,請求出定值;若不是,請說明理由.
是定值為0.5
設(shè),
,
兩式相加整理,得.       ⑥
,三者的平方成等差數(shù)列,
為橢圓的右頂點,
.          ⑦
由⑥⑦解得,
,
為定值.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知兩條直線l1:2x-3y+2=0和l2:3x-2y+3=0,有一動圓(圓心和半徑都動)與l1、l2都相交,且l1、l2被圓截得的弦長分別是定值26和24,求圓心的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知雙曲線方程為,以定點為中點的弦存在嗎?若存在,求出其所在直線的方程,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線的頂點在原點,焦點為圓的圓心
(1)求此拋物線方程;
(2)如圖,是否存在過圓心的直線與拋物線、圓順次交于且使得,成等差數(shù)列,若存在,求出它的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知梯形中,,點分有向線段所成的比為,雙曲線過,三點,且以,為焦點,當時,求雙曲線離心率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知雙曲線的兩個焦點為,實半軸長與虛半軸長的乘積為.直線點且與線段的夾角為,與線段垂直平分線的交點為,線段與雙曲線的交點為,且,求雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)點距離之差為,到軸,軸距離之比為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

的半徑為的定圓的兩互相垂直的直徑,作動弦,引,且交,求點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知⊙Q:(x-1)2+y2=16,動⊙M過定點P(-1,0)且與⊙Q相切,則M點的軌跡方程是:                    

查看答案和解析>>

同步練習冊答案