已知直線(xiàn)l1的方向向量
a
=(2,4,x),直線(xiàn)l2的方向向量
b
=(2,y,2),若|
a
|=6,且
a
b
,則x+y的值是( 。
A、-3或1B、3或-1
C、-3D、1
考點(diǎn):向量的數(shù)量積判斷向量的共線(xiàn)與垂直
專(zhuān)題:空間向量及應(yīng)用
分析:由已知利用向量的模和向量垂直的性質(zhì)得
|
a
|=
4+16+x2
=6
a
b
=4+4y+2x=0
,求出x,y,由此能求出x+y的值.
解答: 解:由已知得
|
a
|=
4+16+x2
=6
a
b
=4+4y+2x=0
,
解得x=-4,y=1或x=4,y=-3,
∴x+y=-3或x+y=1.
故選:A.
點(diǎn)評(píng):本題考查代數(shù)式的值的求法,是基礎(chǔ)題,解題時(shí)要注意向量垂直的性質(zhì)的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若實(shí)數(shù)x,y滿(mǎn)足
x-y+1≥0
y+1≥0
x+y+1≤0
,則z=2x-y的最大值為( 。
A、
1
4
B、
1
2
C、1
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sinx+acosx(x∈R),
π
4
是函數(shù)f(x)的一個(gè)零點(diǎn),
(1)求a的值,并求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若α、β∈(0,
π
2
),且f(α+
π
4
)=
10
5
,f(β+
4
)=
3
5
5
,求sin(α+β).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sinα=-
5
13
,且π<α<
2
,求角α的其它兩個(gè)三角函數(shù)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

證明:函數(shù)f(x)=x+
x
在(0,
4
7
]上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C與直線(xiàn)l:x+y=1相切于點(diǎn)A(2,1)且圓心在直線(xiàn)y=-2x上,
(1)求圓C的方程;
(2)過(guò)點(diǎn)B(3,2)作圓C的切線(xiàn),求該切線(xiàn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x+
2
x

(1)判斷函數(shù)在(0,
2
]上的單調(diào)性并給出證明.
(2)求函數(shù)當(dāng)x∈[
1
4
,
2
3
]
時(shí)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)y=
2sinx+
2
的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
=(m+1,0,2m),
b
=(6,0,2),
a
b
,則m的值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案