已知函數(shù)f(x)=|x-a|.
(Ⅰ)若不等式f(x)≥3的解集為{x|x≤1或x≥5},求實數(shù)a的值;
(Ⅱ)在(Ⅰ)的條件下,若f(x)+f(x+4)≥m對一切實數(shù)x恒成立,求實數(shù)m的取值范圍.
(Ⅰ)由f(x)≥3得|x-a|≥3,解得x≤a-3或x≥a+3.
又已知不等式f(x)≥3的解集為{x|x≤-1或x≥5},所以,解得a=2.……5分
(Ⅱ)當(dāng)a=2時,f(x)=|x-2|,設(shè)g(x)=f(x)+f(x+4),
于是g(x)=|x-2|+|x+2|=[JB({]-2x,x<-24,-2≤x≤22x,x>2[JB)] 所以當(dāng)x<-2時,g(x)>4;當(dāng)-2≤x≤2時,g(x)=4;當(dāng)x>2時,g(x)>4。
綜上可得,g(x)的最小值為4.
從而若f(x)+f(x+4)≥m,即g(x)≥m對一切實數(shù)x恒成立,則m的取值范圍為(-∞,4].
法二:(Ⅰ)同法一.
(Ⅱ)當(dāng)a=2時,f(x)=|x-2|.設(shè)g(x)=f(x)+f(x+4).
由|x-2|+|x+2|≥|(x-2)-(x+2)|=4(當(dāng)且僅當(dāng)-2≤x≤2時等號成立),得g(x)的最小值為4.從而,若f(x)+f(x+4)≥m,即g(x)≥m對一切實數(shù)x恒成立.則m的取值范圍為(-∞,4]?
【解析】略
科目:高中數(shù)學(xué) 來源: 題型:
|
1 |
π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
|
A、(
| ||||
B、(
| ||||
C、(
| ||||
D、[
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
2x-2-x | 2x+2-x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
x-1 | x+a |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com