18.用反證法證明“a、b∈N*,如果a、b能被2017整除,那么a、b中至少有一個能被2017整除”時,假設(shè)的內(nèi)容是( 。
A.a不能被2017整除B.b不能被2017整除
C.a、b都不能被2017整除D.a、b中至多有一個能被2017整除

分析 反設(shè)是一種對立性假設(shè),即想證明一個命題成立時,可以證明其否定不成立,由此得出此命題是成立的.

解答 解:由于反證法是命題的否定的一個運用,故用反證法證明命題時,可以設(shè)其否定成立進行推證.
命題“a、b∈N*,如果a、b能被2017整除,那么a、b中至少有一個能被2017整除”的否定是“a,b都不能被2017整除”.
故選C.

點評 本題考查反證法的應(yīng)用,是基礎(chǔ)題,解題時要認真審題,注意反證法性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右焦點分別為F1、F2,A為橢圓E的右頂點,B,C分別為橢圓E的上、下頂點.線段CF2的延長線與線段AB交于點M,與橢圓E交于點P.
(1)若橢圓的離心率為$\frac{{\sqrt{2}}}{2}$,△PF1C的面積為12,求橢圓E的方程;
(2)設(shè)S${\;}_{△CM{F}_{2}}$=λ•S${\;}_{△CP{F}_{1}}$,求實數(shù)λ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.如圖,F(xiàn)1、F2是橢圓C1與雙曲線C2的公共焦點,A、B分別是C1、C2在第二、四象限的公共點,若AF1⊥BF1,且∠AF1O=$\frac{π}{3}$,則C1與C2的離心率之和為( 。
A.2$\sqrt{3}$B.4C.2$\sqrt{5}$D.2$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率$\frac{\sqrt{2}}{2}$,且P(0,1)是橢圓C上的點,F(xiàn)是橢圓的右焦點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點F且不與坐標(biāo)軸平行的直線l與橢圓C交于A,B兩點,線段AB的中點為M,O為坐標(biāo)原點,直線OM的斜率kOM=-$\frac{1}{2}$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.某三棱柱的三視圖如圖所示,該三棱柱的表面積為3+2$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若函數(shù)f(x)=x2+ax+2b在區(qū)間(0,1)和(1,2)內(nèi)各有一個零點,則$\frac{a+b-3}{a-1}$的取值范圍是( 。
A.($\frac{1}{4}$,1)B.($\frac{3}{4}$,$\frac{3}{2}$)C.($\frac{1}{4}$,$\frac{5}{4}$)D.($\frac{5}{4}$,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,四棱錐S-ABCD中,△ABD是正三角形,CB=CD,SC⊥BD.
(1)求證:SA⊥BD;
(2)若∠BCD=120°,M為棱SA的中點,求證:DM∥平面SBC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.關(guān)于隨機對照試驗的說法,錯誤的是( 。
A.試驗組的對象必須是隨機選取的
B.必須有試驗組和對照組
C.對照組中的對象不必使用安慰劑
D.在有些隨機對照試驗中,為了得到更真實的結(jié)果,有時還需要使用安慰劑

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.(1)求值C${\;}_{n}^{5-n}$+C${\;}_{n+1}^{9-n}$;
(2)已知$\frac{1}{{C}_{5}^{m}}$-$\frac{1}{{C}_{6}^{m}}$=$\frac{7}{10{C}_{7}^{m}}$,求C${\;}_{8}^{m}$.

查看答案和解析>>

同步練習(xí)冊答案