【題目】已知f(x)=ax2+bx+1.
(1)若f(x)>0的解集是(﹣1,2),求實(shí)數(shù)a,b的值.
(2)求z=3a﹣b的取值范圍。

【答案】
(1)解:由題意可知:a<0,且ax2+bx+1=0的解為﹣1,2

∴ 解得: ,


(2)解:由題意可得 ,

畫出可行域,由

得{

作平行直線系z(mì)=3a﹣b可知z=3a﹣b的取值范圍是(﹣2,+∞)


【解析】(1)由一元二次不等式的解集與一元二次方程的根的關(guān)系可以得出,ax2+bx+1=0的解為﹣1,2,由根系關(guān)系即可求得實(shí)數(shù)a,b的值;(2)要題意可得出一關(guān)于實(shí)數(shù)a,b的不等式組,要求3a﹣b的取值范圍可用線性規(guī)劃的知識(shí)來求,以所得不等式組作為約束條件,以3a﹣b作為目標(biāo)函數(shù)即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過點(diǎn)A(0,1)且斜率為k的直線l與圓C(x2)2(y3)21交于MN兩點(diǎn).

(1)k的取值范圍;

(2)12,其中O為坐標(biāo)原點(diǎn),求|MN|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如下圖所示將若干個(gè)點(diǎn)擺成三角形圖案,每條邊(包括兩個(gè)端點(diǎn))有n(n>l,n∈N*)個(gè)點(diǎn),相應(yīng)的圖案中總的點(diǎn)數(shù)記為 ,則 =( ).
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地建一座橋,兩端的橋墩已建好,這兩墩相距640米,余下工程只需要建兩端橋墩之間的橋面和橋墩,經(jīng)預(yù)測(cè),一個(gè)橋墩的工程費(fèi)用為256萬元,距離為米的相鄰兩墩之間的橋面工程費(fèi)用為萬元.假設(shè)橋墩等距離分布,所有橋墩都視為點(diǎn),且不考慮其他因素,設(shè)需要新建個(gè)橋墩,記余下工程的費(fèi)用為萬元.

(1)試寫出關(guān)于的函數(shù)關(guān)系式;(注意:

(2)需新建多少個(gè)橋墩才能使最小?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)=lnx+ax2+(2a+1)x

(1)討論的單調(diào)性;

(2)當(dāng)a﹤0時(shí),證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】集合M={x|2x+1≥0},N={x|x2﹣(a+1)x+a<0},若NM,則( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某單位的職工食堂中,食堂每天以元/個(gè)的價(jià)格從面包店購進(jìn)面包,然后以元/個(gè)的價(jià)格出售.如果當(dāng)天賣不完,剩下的面包以元/個(gè)的價(jià)格全部賣給飼料加工廠.根據(jù)以往統(tǒng)計(jì)資料,得到食堂每天面包需求量的頻率分布直方圖如下圖所示.食堂某天購進(jìn)了個(gè)面包,以(單位:個(gè),)表示面包的需求量,(單位:元)表示利潤(rùn).

(1)求關(guān)于的函數(shù)解析式;

(2)根據(jù)直方圖估計(jì)利潤(rùn)不少于元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中,是假命題的是(
A.?x0∈R,sinx0+cosx0=
B.?x0∈R,tanx0=2016
C.?x>0,x>lnx
D.?x∈R,2x>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某汽車美容公司為吸引顧客,推出優(yōu)惠活動(dòng):對(duì)首次消費(fèi)的顧客,按200元/次收費(fèi),并注冊(cè)成為會(huì)員,對(duì)會(huì)員逐次消費(fèi)給予相應(yīng)優(yōu)惠,標(biāo)準(zhǔn)如表:

消費(fèi)次第

第1次

第2次

第3次

第4次

≥5次

收費(fèi)比例

1

0.95

0.90

0.85

0.80

該公司從注冊(cè)的會(huì)員中,隨機(jī)抽取了100位進(jìn)行統(tǒng)計(jì),得到統(tǒng)計(jì)數(shù)據(jù)如表:

消費(fèi)次第

第1次

第2次

第3次

第4次

第5次

頻數(shù)

60

20

10

5

5

假設(shè)汽車美容一次,公司成本為150元,根據(jù)所給數(shù)據(jù),解答下列問題:
(1)估計(jì)該公司一位會(huì)員至少消費(fèi)兩次的概率;
(2)某會(huì)員僅消費(fèi)兩次,求這兩次消費(fèi)中,公司獲得的平均利潤(rùn);
(3)設(shè)該公司從至少消費(fèi)兩次,求這的顧客消費(fèi)次數(shù)用分層抽樣方法抽出8人,再從這8人中抽出2人發(fā)放紀(jì)念品,求抽出2人中恰有1人消費(fèi)兩次的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案