【題目】已知命題p:函數(shù)f(x)=x2-2mx+4在[2,+∞)上單調(diào)遞增,命題q:關(guān)于x的不等式mx2+4(m-2)x+4>0的解集為R.若pq為真命題,pq為假命題,求m的取值范圍.

【答案】

【解析】

根據(jù)二次函數(shù)的單調(diào)性,以及一元二次不等式的解的情況和判別式的關(guān)系即可求出命題p,q為真命題時(shí)m的取值范圍.根據(jù)pq為真命題,pq為假命題得到p真q假或p假q真,求出這兩種情況下m的范圍并求并集即可.

若命題p為真,因?yàn)楹瘮?shù)f(x)的圖象的對(duì)稱軸為x=m,則m≤2;若命題q為真,當(dāng)m=0時(shí),原不等式為-8x+4>0,顯然不成立.

當(dāng)m≠0時(shí),則有解得1<m<4.

由題意知,命題p,q一真一假,

解得m≤1或2<m<4.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)定義在區(qū)間[﹣m,m]上的函數(shù)f(x)=log2 是奇函數(shù),且f(﹣ )≠f( ),則nm的范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在四棱錐中,垂直于正方形所在的平面,在這個(gè)四棱錐的所有表面及面、面中,一定互相垂直的平面有_________對(duì).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}滿足an= ,若從{an}中提取一個(gè)公比為q的等比數(shù)列{ },其中k1=1,且k1<k2<…<kn , kn∈N* , 則滿足條件的最小q的值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)=a(x﹣lnx)+ ,a∈R.
(1)討論f(x)的單調(diào)性;
(2)當(dāng)a= 時(shí),證明:f(x)>f′(x)+ 對(duì)于任意的x∈[1,2]成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將函數(shù)y=sin(x+ )的圖象上各點(diǎn)的橫坐標(biāo)壓縮為原來(lái)的 倍(縱坐標(biāo)不變),所得函數(shù)在下面哪個(gè)區(qū)間單調(diào)遞增(
A.(﹣
B.(﹣ ,
C.(﹣
D.(﹣ ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)古代儒家要求學(xué)生掌握六種基本才藝:禮、樂(lè)、射、御、書(shū)、數(shù),簡(jiǎn)稱“六藝”,某中學(xué)為弘揚(yáng)“六藝”的傳統(tǒng)文化,分別進(jìn)行了主題為“禮、樂(lè)、射、御、書(shū)、數(shù)”六場(chǎng)傳統(tǒng)文化知識(shí)的競(jìng)賽,現(xiàn)有甲、乙、丙三位選手進(jìn)入了前三名的最后角逐、規(guī)定:每場(chǎng)知識(shí)競(jìng)賽前三名的得分都分別為,且);選手最后得分為各場(chǎng)得分之和,在六場(chǎng)比賽后,已知甲最后得分為26分,乙和丙最后得分都為11分,且乙在其中一場(chǎng)比賽中獲得第一名,則下列推理正確的是( )

A. 每場(chǎng)比賽第一名得分為4 B. 甲可能有一場(chǎng)比賽獲得第二名

C. 乙有四場(chǎng)比賽獲得第三名 D. 丙可能有一場(chǎng)比賽獲得第一名

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的切線,ADE是⊙O的割線,AC=AB,連接CD,CE,分別與⊙O交于點(diǎn)F,點(diǎn)G.

(1)求證:△ADC~△ACE;
(2)求證:FG∥AC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知公差不為0的等差數(shù)列的前三項(xiàng)和為6,且成等比數(shù)列

1)求數(shù)列的通項(xiàng)公式;

2)設(shè),數(shù)列的前項(xiàng)和為,求使的最大值

查看答案和解析>>

同步練習(xí)冊(cè)答案