在直角坐標系xOy中,圓C的參數(shù)方程為
x=-
2
+rcosθ
y=-
2
+rsinθ
(θ為參數(shù),r>0).以O(shè)為極點,x軸正半軸為極軸,并取相同的單位長度建立極坐標系,直線l的極坐標方程為ρsin(θ+
π
4
)=1
.當圓C上的點到直線l的最大距離為4時,圓的半徑r=
 
考點:簡單曲線的極坐標方程
專題:坐標系和參數(shù)方程
分析:把圓C的參數(shù)方程、直線l的極坐標方程分別化為直角坐標方程.為設(shè)圓心C到直線l的距離為d,則圓C上的點到直線l的最大距離=d+r,再利用已知即可得出.
解答: 解:由圓C的參數(shù)方程
x=-
2
+rcosθ
y=-
2
+rsinθ
(θ為參數(shù),r>0),消去參數(shù)θ化為(x+
2
)2+(y+
2
)2=r2

可得圓心C(-
2
,-
2
)
,半徑r.
直線l的極坐標方程為ρsin(θ+
π
4
)=1
.化為ρ(
2
2
sinθ+
2
2
cosθ)=1
,即x+y-
2
=0.
設(shè)圓心C到直線l的距離為d,則d=
|-
2
-
2
-
2
|
2
=3.
則圓C上的點到直線l的最大距離=d+r,
∵當圓C上的點到直線l的最大距離為4,
∴3+r=4,解得r=1.
故答案為:1.
點評:本題考查了把圓的參數(shù)方程、直線l的極坐標方程分別化為直角坐標方程,點到直線的距離公式,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知橢圓Γ:
x2
a2
+
y2
b2
=1( a>b>0)的焦距為2
3
,一個焦點與短軸兩端點構(gòu)成一個等邊三角形,直線l:y=2x+b(b∈R)與橢圓Γ相交于A、B兩點,且∠AOB為鈍角.
(1)求橢圓Γ的方程;
(2)求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列三個命題:
①函數(shù)y=
1
2
ln
1-cosx
1+cosx
y=lntan
x
2
是同一函數(shù).
②已知隨機變量X服從正態(tài)分布N(1,σ2),若P(x≤2)=0.72,則P(x≤0)=0.28.
③如圖,在△ABC中,
AN
=
1
3
NC
,P是BN上的一點,若
AP
=m
AB
+
2
11
AC
,則實數(shù)m的值為
3
11

其中真命題是
 
.(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知每生產(chǎn)100克洗衣粉的原料和加工費為1.8元,某洗衣粉廠采用兩種包裝,其包裝費及售價如下表所示,則下列說法中:
型號小包裝大包裝
重量100克300克
包裝費0.5元0.7元
售價3.00元8.40元
①買小包裝實惠;②賣小包裝盈利多;③買大包裝實惠;④賣1包大包裝比賣3包小包裝還要多盈利.所有正確的說法是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sinβ=
3
5
π
2
<β<π),且sin(α+β)=cosα,則sin2α+sinαcosα-2cos2α等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=xn+1(n∈N*)的圖象與直線x=1交于點P,若函數(shù)f(x)的圖象在點P處的切線與x軸交點的橫坐標為xn,則log2014x1+log2014x2+…+log2014x2013的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=(
1
4
x-
x
,正實數(shù)a、b、c滿足f(c)<0<f(a)<f(b),若實數(shù)d是函數(shù)f(x)的一個零點,那么下列5個判斷:①d<a;②d>b;③d<c;④c<a;⑤a>b.其中可能成立的個數(shù)為( 。
A、4B、3C、2D、1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)A、B、C、D是空間四個不同的點,在下列命題中,不正確的是( 。
A、若直線AB與CD沒有公共點,則AB∥CD
B、若AC與BD共面,則AD與BC共面
C、若AC與BD是異面直線,則AD與BC是異面直線
D、若AB=AC,DB=DC,則AD⊥BC

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,如果a,b,c分別是角A,B,C的對邊,設(shè)命題p:(a2+b2)sin(A-B)=(a2-b2)sin(A+B);命題q:△ABC為直角三角形,那么命題p是命題q的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

同步練習冊答案