【題目】求與直線3x-4y+7=0平行,且在兩坐標軸上截距之和為1的直線l的方程.
【答案】3x-4y-12=0.
【解析】試題分析: 方法一:由題意知:可設l的方程為3x-4y+m=0,求出l在x軸,y軸上的截距,由截距之和為1,解出m,代回求出直線方程; 方法二:設直線方程為+=1,由題意得解出a,b即可.
試題解析:
方法一:由題意知:可設l的方程為3x-4y+m=0,
則l在x軸,y軸上的截距分別為-, .
由-+=1知,m=-12.
所以直線l的方程為:3x-4y-12=0.
方法二:設直線方程為+=1,
由題意得
解得
所以直線l的方程為: +=1.
即3x-4y-12=0.
點睛:本題考查直線方程的求法,屬于基礎題.直線方程有五種不同的形式:斜截式,點斜式,兩點式,截距式和一般式,兩種不同的方法分別使用了直線方程中的一般式和截距式,求出直線的橫縱截距,根據(jù)題中給出的截距和為1,求出參數(shù)的值,代入原方程求出直線方程,最后寫成一般形式.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當時,求函數(shù)的極小值;
(Ⅱ)設定義在上的函數(shù)在點處的切線方程為:,當時,若在內(nèi)恒成立,則稱為函數(shù)的“轉(zhuǎn)點”.當時,試問函數(shù)是否存在“轉(zhuǎn)點”?若存在,求出轉(zhuǎn)點的橫坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某中學高三年級有學生500人,其中男生300人,女生200人。為了研究學生的數(shù)學成績是否與性別有關,采用分層抽樣的方法,從中抽取了100名學生,統(tǒng)計了他們期中考試的數(shù)學分數(shù),然后按照性別分為男、女兩組,再將兩組的分數(shù)分成5組: 分別加以統(tǒng)計,得到如圖所示的頻率分布直方圖。
(I)從樣本分數(shù)小于110分的學生中隨機抽取2人,求兩人恰為一男一女的概率;
(II)若規(guī)定分數(shù)不小于130分的學生為“數(shù)學尖子生”,請你根據(jù)已知條件完成2×2列聯(lián)表,并判斷是否有90%的把握認為“數(shù)學尖子生與性別有關”?
附表:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù) (e=2.71828,是自然對數(shù)的底數(shù))在的定義域上單調(diào)遞增,則稱函數(shù)具有M性質(zhì),下列函數(shù)中具有M性質(zhì)的是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線的參數(shù)方程為若以直角坐標系xOy的O點為極點,Ox方向為極軸,選擇相同的長度單位建立極坐標系,得曲線C的極坐標方程為
(1)求直線的斜率和曲線C的直角坐標方程;
(2)若直線與曲線C交于A、B 兩點,設點,求|PA|+|PB|.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某種藥種植基地有兩處種植區(qū)的藥材需在下周一、周二兩天內(nèi)采摘完畢,基地員工一天可以完成一處種植區(qū)的采摘,由于下雨會影響藥材的收益,若基地收益如下表所示:已知下周一和下周二無雨的概率相同且為,兩天是否下雨互不影響,若兩天都下雨的概率為
(1)求及基地的預期收益;
(2)若該基地額外聘請工人,可在周一當天完成全部采摘任務,若周一無雨時收益為萬元,有雨時收益為萬元,且額外聘請工人的成本為元,問該基地是否應該額外聘請工人,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司有五輛汽車,其中兩輛汽車的車牌尾號均為1. 兩輛汽車的車牌尾號均為2, 車的車牌尾號為6,已知在非限行日,每輛車可能出車或不出車, 三輛汽車每天出車的概率均為, 兩輛汽車每天出車的概率均為,且五輛汽車是否出車相互獨立,該公司所在地區(qū)汽車限行規(guī)定如下:
車牌尾號 | 0和5 | 1和6 | 2和7 | 3和8 | 4和9 |
限行日 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 |
(1)求該公司在星期一至少有2輛汽車出國的概率;
(2)設表示該公司在星期二和星期三兩天出車的車輛數(shù)之和,求的分布列及期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知是拋物線的焦點, 為拋物線上不同的兩點, 分別是拋物線在點、點處的切線, 是的交點.
(1)當直線經(jīng)過焦點時,求證:點在定直線上;
(2)若,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校高三(1)班全體女生的一次數(shù)學測試成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見部分如圖所示,據(jù)此解答如下問題:
(1)求高三(1)班全體女生的人數(shù);
(2)求分數(shù)在[80,90)之間的女生人數(shù),并計算頻率分布直方圖中[80,90)之間的矩形的高;
(3)若要從分數(shù)在[80,100]之間的試卷中任取兩份分析女生失分情況,在抽取的試卷中,求至少有一份分數(shù)在[90,100]之間的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com