(1)已知一個(gè)圓經(jīng)過點(diǎn)P(5,1),且圓心在點(diǎn)C(6,-2),求圓的方程.
(2)已知圓C:x2+y2-8y+12=0,直線l:ax+y+2a=0.求當(dāng)a為何值時(shí),直線l與圓C相切.
【答案】分析:(1)由兩點(diǎn)的距離公式算出PC的長,即得圓的半徑r=,再根據(jù)圓的標(biāo)準(zhǔn)方程列式,即可求出所求圓的方程.
(2)求出圓的圓心為C(0,4),半徑r=2.圓的切線到圓心的距離等于半徑,因此由點(diǎn)到直線的距離公式建立關(guān)于a的方程,解之即可得到滿足條件的a值.
解答:解:(1)∵圓經(jīng)過點(diǎn)P(5,1),且圓心在點(diǎn)C(6,-2),
∴圓的半徑r==
因此,所求圓的標(biāo)準(zhǔn)方程為(x-5)2+(y-1)2=10;
(2)圓C:x2+y2-8y+12=0的圓心為C(0,4),半徑r=2
當(dāng)直線l:ax+y+2a=0與圓C相切時(shí),C到直線的距離為
d==r,即=2,解之得a=-
∴當(dāng)a值為-時(shí),直線l與圓C相切.
點(diǎn)評:本題給出直線與圓相切,求參數(shù)a的值.著重考查了圓的標(biāo)準(zhǔn)方程與一般方程、點(diǎn)到直線的距離公式等知識,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知一個(gè)圓經(jīng)過點(diǎn)P(5,1),且圓心在點(diǎn)C(6,-2),求圓的方程.
(2)已知圓C:x2+y2-8y+12=0,直線l:ax+y+2a=0.求當(dāng)a為何值時(shí),直線l與圓C相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一個(gè)圓經(jīng)過直線l:2x+y+4=0和圓C:x2+y2+2x-4y+1=0的兩個(gè)交點(diǎn),且有最小面積,求此圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:江蘇省江陰市一中2011-2012學(xué)年高二上學(xué)期期中考試數(shù)學(xué)試題 題型:044

已知一個(gè)圓經(jīng)過直線l:2x+y+4=0和圓C:x2+y2+2x-4y+1=0的兩個(gè)交點(diǎn),且有最小面積,求此圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(1)已知一個(gè)圓經(jīng)過點(diǎn)P(5,1),且圓心在點(diǎn)C(6,-2),求圓的方程.
(2)已知圓C:x2+y2-8y+12=0,直線l:ax+y+2a=0.求當(dāng)a為何值時(shí),直線l與圓C相切.

查看答案和解析>>

同步練習(xí)冊答案