【題目】?jī)蓷l平行直線和圓的位置關(guān)系定義為:若兩條平行直線和圓有四個(gè)不同的公共點(diǎn),則稱兩條平行線和圓“相交”;若兩平行直線和圓沒有公共點(diǎn),則稱兩條平行線和圓“相離”;若兩平行直線和圓有一個(gè)、兩個(gè)或三個(gè)不同的公共點(diǎn),則稱兩條平行線和圓“相切”.已知直線l1:2x﹣y+a=0,l2:2x﹣y+a2+1=0和圓:x2+y2+2x﹣4=0相切,則a的取值范圍是(
A.a>7或a<﹣3
B.
C.﹣3≤a≤一 ≤a≤7
D.a≥7或a≤﹣3

【答案】C
【解析】解:當(dāng)兩平行直線和圓相交時(shí),有 ,解得﹣ <a< . 當(dāng)兩平行直線和圓相離時(shí),有 ,解得 a<﹣3 或a>7.
故當(dāng)兩平行直線和圓相切時(shí),把以上兩種情況下求得的a的范圍取并集后,再取此并集的補(bǔ)集,即得所求.
故所求的a的取值范圍是﹣3≤a≤一 ≤a≤7,
故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】多面體, , , , 在平面上的射影是線段的中點(diǎn).

(1)求證:平面平面;

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)圓C滿足三個(gè)條件①過原點(diǎn);②圓心在y=x上;③截y軸所得的弦長(zhǎng)為4,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下面給出的關(guān)系式中正確的個(gè)數(shù)是(
=
=
2=| |2
④( =
⑤| |≤
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知cosx=﹣ ,x∈(0,π)
(1)求cos(x﹣ )的值;
(2)求sin(2x+ )的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖為一簡(jiǎn)單組合體,其底面 ABCD為正方形,PD⊥平面ABCD,EC∥PD,且PD=AD=2EC=2.
(1)求證:BE∥平面PDA;
(2)求四棱錐B﹣CEPD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}的各項(xiàng)都是正數(shù),且對(duì)任意n∈N* , 都有(an﹣1)(an+3)=4Sn , 其中Sn為數(shù)列{an}的前n項(xiàng)和.
(1)求證數(shù)列{an}是等差數(shù)列;
(2)若數(shù)列{ }的前n項(xiàng)和為Tn , 求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量
(Ⅰ)若 方向上的投影為 ,求λ的值;
(Ⅱ)命題P:向量 的夾角為銳角;
命題q: ,其中向量 , =( )(λ,α∈R).若“p或q”為真命題,“p且q”為假命題,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地最近十年對(duì)某商品的需求量逐年上升,下表是部分統(tǒng)計(jì)數(shù)據(jù):

年份

2008

2010

2012

2014

2016

需要量(萬件)

236

246

257

276

286


(1)利用所給數(shù)據(jù)求年需求量y與年份x之間的回歸直線方程 = x+
(2)預(yù)測(cè)該地2018年的商品需求量(結(jié)果保留整數(shù)).

查看答案和解析>>

同步練習(xí)冊(cè)答案