【題目】近期,某超市針對一款飲料推出刷臉支付活動,活動設(shè)置了一段時間的推廣期,由于推廣期內(nèi)優(yōu)惠力度較大,吸引越來越多的人開始使用刷臉支付.該超市統(tǒng)計了活動剛推出一周內(nèi)每一天使用刷臉支付的人次,用表示活動推出的天數(shù),表示每天使用刷臉支付的人次,統(tǒng)計數(shù)據(jù)如下表所示:

1)在推廣期內(nèi),均為大于零的常數(shù))哪一個適宜作為刷臉支付的人次關(guān)于活動推出天數(shù)的回歸方程類型?(給出判斷即可,不必說明理由);

2)根據(jù)(1)的判斷結(jié)果及表中的數(shù)據(jù),求關(guān)于的回歸方程,并預(yù)測活動推出第天使用刷臉支付的人次;

3)已知一瓶該飲料的售價為元,顧客的支付方式有三種:現(xiàn)金支付、掃碼支付和刷臉支付,其中有使用現(xiàn)金支付,使用現(xiàn)金支付的顧客無優(yōu)惠;有使用掃碼支付,使用掃碼支付享受折優(yōu)惠;有使用刷臉支付,根據(jù)統(tǒng)計結(jié)果得知,使用刷臉支付的顧客,享受折優(yōu)惠的概率為,享受折優(yōu)惠的概率為,享受折優(yōu)惠的概率為.根據(jù)所給數(shù)據(jù)估計購買一瓶該飲料的平均花費.

參考數(shù)據(jù):其中,

參考公式:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計公式分別為:.

【答案】1適宜(2,活動推出第天使用刷臉支付的人次為3)平均花費為(元)

【解析】

1)直接根據(jù)統(tǒng)計數(shù)據(jù)表判斷,適宜;

2)把,兩邊同時取常用對數(shù),,則兩者線性相關(guān),根據(jù)已知條件求出關(guān)與的線性回歸方程,進(jìn)而轉(zhuǎn)化為關(guān)與的線性回歸方程;

3)記購買一瓶該飲料的花費為(元),則的取值可能為:,求出的分布,進(jìn)而求出的期望.

1)直接根據(jù)統(tǒng)計數(shù)據(jù)表判斷,

適宜作為掃碼支付的人數(shù)關(guān)于活動推出天數(shù)的回歸方程類型;

2)因為,兩邊同時取常用對數(shù)得:

設(shè)所以,

因為,

所以,

把樣本中心點代入,得:

所以,

所以關(guān)于的回歸方程式:,

代入上式,,

所以活動推出第天使用刷臉支付的人次為;

3)記購買一瓶該飲料的花費為(元),則的取值可能為:

,

,

,

,

分布列為:

因為,

所以估計購買一瓶該飲料的平均花費為(元).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知一圓經(jīng)過點,且它的圓心在直線.

I)求此圓的方程;

II)若點為所求圓上任意一點,且點,求線段的中點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市戶居民的月平均用電量(單位:度),以,,,分組的頻率分布直方圖如圖.

1)求直方圖中的值;

2)求月平均用電量的眾數(shù)和中位數(shù);

3)在月平均用電量為,,,的四組用戶中,用分層抽樣的方法抽取戶居民,則月平均用電量在的用戶中應(yīng)抽取多少戶?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】ABC中,角A,B,C的對邊分別為a,b,c,且2bcosC+c=2a.

(Ⅰ)求角B的大;

(Ⅱ)若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)在區(qū)間上有最大值和最小值,設(shè)

1)求,的值;

2)若不等式上有解,求實數(shù)的取值范圍;

3)若有三個不同的實數(shù)解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某研究性學(xué)習(xí)小組對春季晝夜溫差大小與某花卉種子發(fā)芽多少之間的關(guān)系進(jìn)行硏究,他們分別記錄了31日至35日的每天晝夜溫差與實驗室每天每100顆種子浸泡后的發(fā)芽數(shù),得到如下資料:

日期

31

32

33

34

35

溫差x

8

11

13

12

10

發(fā)芽數(shù)y(顆)

22

27

31

35

26

1)從31日至35日中任選2天,記發(fā)芽的種子數(shù)分別為m,n,求事件m,n均不小于27”的概率.

2)若選取的是31日與35日的兩組數(shù)據(jù),請根據(jù)32日至34日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程

3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?

(參考公式:回歸直線的方程是,其中,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“克拉茨猜想”又稱“猜想”,是德國數(shù)學(xué)家洛薩克拉茨在1950年世界數(shù)學(xué)家大會上公布的一個猜想:任給一個正整數(shù),如果是偶數(shù),就將它減半;如果為奇數(shù)就將它乘3加1,不斷重復(fù)這樣的運(yùn)算,經(jīng)過有限步后,最終都能夠得到1.己知正整數(shù)經(jīng)過6次運(yùn)算后得到1,則的值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于不等式,其中

1)試求不等式的解集;

2)對于不等式的解集,若滿足(其中為整數(shù)集).試探究集合能否為有限集?若能,求出使得集合中元素個數(shù)最少時的取值范圍,并用列舉法表示集合;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某科研機(jī)構(gòu)為了研究喝酒與糖尿病是否有關(guān),現(xiàn)對該市30名男性成人進(jìn)行了問卷調(diào)查,并得到了如下列聯(lián)表,規(guī)定平均每天喝100ml以上的為常喝.已知在所有的30人中隨機(jī)抽取1人,是糖尿病的概率為.

常喝

不常喝

合計

有糖尿病

2

無糖尿病

18

合計

30

1)請將上表補(bǔ)充完整;

2)是否有的把握認(rèn)為糖尿病與喝酒有關(guān)?請說明理由.

3)已知常喝酒且有糖尿病的人中恰有兩名女性,現(xiàn)從常喝酒且有糖尿病的人中隨機(jī)抽取2人,求恰好抽到一名男性和一名女性的概率.

參考公式:

參考數(shù)據(jù):

k

查看答案和解析>>

同步練習(xí)冊答案