(14分)
對(duì)于數(shù)列,若滿足,則稱數(shù)列為“0-1
數(shù)列”.定義變換,將“0-1數(shù)列”中原有的每個(gè)1都變成0,1,原有的每個(gè)0都變成1,0。例如:1,0,1,則設(shè)是“0-1數(shù)列”,令,…。
(1)若數(shù)列求數(shù)列;
(2)若數(shù)列共有10項(xiàng),則數(shù)列中連續(xù)兩項(xiàng)相等的數(shù)對(duì)至少有多少對(duì)?請(qǐng)說明理由;
(3)若為0,1,記數(shù)列中連續(xù)兩項(xiàng)都是0的數(shù)對(duì)個(gè)數(shù)為,
關(guān)于的表達(dá)式

上述各式相加可得:,………13分
經(jīng)檢驗(yàn),時(shí),也滿足
所以……………………………………14分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知數(shù)列對(duì)任意的p,q∈N*滿足apq=ap+aq,且a2=-6,那么a10=(  )
A.-165B.-33
C.-30 D.-21

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知,數(shù)列滿足,,
 
I)求證數(shù)列是等比數(shù)列;
(Ⅱ)求數(shù)列中最大項(xiàng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分8分)
已知數(shù)列為等差數(shù)列,且
(1)求數(shù)列的通項(xiàng)公式;
(2)證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

福建泉州市2008年的生產(chǎn)總值約為
3151億元人民幣,如果從此泉州市生產(chǎn)
總值的年增長率為10.5%,求泉州市最早
哪一年的生產(chǎn)總值超過8000億元人民幣?
某同學(xué)為解答這個(gè)問題設(shè)計(jì)了一個(gè)程序框圖,
但不慎將此框圖的一個(gè)處理框中的內(nèi)容污染
而看不到了,則此框圖中因被污染而看不到的
內(nèi)容應(yīng)是                       (   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列{an},且x=是函數(shù)f(x)=an-1x3-3[(t+1)an-an+1] x+1(n≥2)的一個(gè)極值點(diǎn).?dāng)?shù)列{an}中a1=t,a2=t2(t>0且t≠1) .
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記bn=2(1-),當(dāng)t=2時(shí),數(shù)列{bn}的前n項(xiàng)和為Sn,求使Sn>2010的n的最小值;
(3)若cn,證明:( n∈N).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列滿足
(1)求數(shù)列的通項(xiàng)公式;
2)設(shè)為數(shù)列的前n項(xiàng)積,是否存在實(shí)數(shù)a,使得不等式對(duì)一切
都成立?若存在,求出的取值范圍,若不存在,請(qǐng)說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在等差數(shù)列中,最大時(shí),的值是        .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

.某醫(yī)院近30天每天因患甲型H1N1流感而入院就診的人數(shù)依次構(gòu)成數(shù)列,己知,且滿足,則該醫(yī)院30天內(nèi)因患H1N1流感就診的人數(shù)共有     

查看答案和解析>>

同步練習(xí)冊(cè)答案