數(shù)列{an}的首項(xiàng)為3,{bn}為等差數(shù)列且bnan+1an(n∈N*).若b3=-2,b10=12,求a8的值

試題分析:先利用等差數(shù)列的通項(xiàng)公式分別表示出b3和b10,聯(lián)立方程求得b1和d的值,進(jìn)而利用疊加法求得b1+b2+…+bn=an+1-a1,最后利用等差數(shù)列的求和公式求得所求先求 再遞推或疊加求
解:依題意可知b1+2d=-2,b1+9d=12,解得b1=-6,d=2,∵bn=an+1-an,∴b1+b2+…+bn=an+1-a1,,∴a8=b1+b2+…+b7+3= 。
點(diǎn)評:本題主要考查了數(shù)列的遞推式,以及對數(shù)列基礎(chǔ)知識的熟練掌握,同時(shí)考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知公差不為零的等差數(shù)列的前四項(xiàng)和為10,且成等比數(shù)列
(1)求通項(xiàng)公式(2)設(shè),求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在等差數(shù)列中,,則數(shù)列項(xiàng)和取最大值時(shí),的值等于(    )
A.12B.11C.10D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知各項(xiàng)均為正數(shù)的數(shù)列滿足:。
(1)求的通項(xiàng)公式
(2)當(dāng)時(shí),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

數(shù)列中,,則等于( 。
A.  B.    C.    D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在等差數(shù)列中,         

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

一同學(xué)在電腦中打出如下若干個(gè)圈:○●○○●○○○●○○○○●○○○○○●…若將此若干個(gè)圈依此規(guī)律繼續(xù)下去,得到一系列的圈,那么在前120個(gè)圈中的●的個(gè)數(shù)是                。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

等差數(shù)列中,,則                    (    )
A.B.C. 0D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

數(shù)列的首項(xiàng)為3,為等差數(shù)列且,若,則(    )
A.0B.3C.8D.11

查看答案和解析>>

同步練習(xí)冊答案