口袋里裝有2個(gè)白球和2個(gè)黑球,這4個(gè)球除顏色外完全相同,不放回地連續(xù)抽取2次,每次取出1球,計(jì)算下列事件的概率:
(1)第一次取出黑球,第二次取出白球;
(2)取出的2球顏色不同;
(3)取出的2球中至少有1個(gè)白球.
考點(diǎn):列舉法計(jì)算基本事件數(shù)及事件發(fā)生的概率
專題:計(jì)算題,概率與統(tǒng)計(jì)
分析:分析可知符合古典概型,由古典概型概率公式求解.
解答: 解:由題意知,符合古典概型.
(1)P=
C
1
2
C
1
2
A
2
4
=
1
3
,
(2)P=2•
C
1
2
C
1
2
A
2
4
=
2
3

(3)P=1-
c
2
2
c
2
4
=1-
1
6
=
5
6
點(diǎn)評:本題考查了古典概型的概率公式應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex-(2a+e)x,a∈R.
(Ⅰ)若對任意x≥1,不等式f(x)≥1恒成立,求實(shí)數(shù)a的取值范圍;
(Ⅱ)如果當(dāng)a>-
e
2
時(shí),關(guān)于x的不等式f(x)+b<0在實(shí)數(shù)范圍內(nèi)總有解,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-x+a,x∈[-1,1],a∈R.
(1)求f(x)的極值;
(2)定義在D內(nèi)的函數(shù)y=f(x),若對于任意的x1,x2∈D都有|f(x1)-f(x2)|<1,則稱函數(shù)y=f(x)為“A型函數(shù)”,若是,給出證明;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡:
(1)
sin(2π-α)cos(π+α)cos(
π
2
+α)cos(
11π
2
-α)
cos(π-α)sin(3π-α)sin(-π-α)sin(
2
+α)
;
(2)
1-2sin10°cos10°
cos10°-
1-cos2170°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(文)已知f(x)=ax3+3x2-x+1,a∈R.
(1)若f(x)的曲線在x=1處的切線與直線y=x+1垂直,求a的值及切線方程;
(2)若對?x∈R對,不等式f'(x)≤4x恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對關(guān)于x的一元二次方程9x2+6ax+b2=0…(*),解決下列兩個(gè)問題:
(1)若a是從1,2,3三個(gè)數(shù)中任取的一個(gè)數(shù),b是從0,1,2三個(gè)數(shù)中任取的一個(gè)數(shù),求方程(*)有兩個(gè)不相等實(shí)根的概率;
(2)若a是從區(qū)間[1,3]任取的一個(gè)數(shù),b是從區(qū)間[0,2]任取的一個(gè)數(shù),求方程(*)有兩個(gè)不相等實(shí)根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,且an和Sn滿足4Sn=(an+1)2(n=1,2,3…).
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=
1
anan+1
,求{bn}的前n項(xiàng)和Tn;
(Ⅲ)在(Ⅱ)的條件下,對任意n∈N*,Tn
m
32
都成立,求整數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知m是復(fù)數(shù)z=(
1-i
1+i
2-i(1+2i)的實(shí)部,且n=π2-∫
 
π
0
(sint+2t)dt,求(mx+
1
nx
6的展開式中含n2的項(xiàng)及中間項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合P中的元素x滿足x∈N,且1<x<a,且集合P中恰有三個(gè)元素,則整數(shù)a=
 

查看答案和解析>>

同步練習(xí)冊答案