【題目】若動點在直線上,動點Q在直線上,記線段的中點為
,且,則的取值范圍為 ________.
【答案】
【解析】
根據(jù)題意判斷出點M的軌跡,利用點到直線的距離公式求得最小值,進而聯(lián)立直線和圓的方程求得點B的坐標(biāo),即可求得最大值,得到答案.
因為動點在直線上,動點Q在直線上,
直線與直線狐仙平行,
動點在直線上,動點在直線上,
所以的中點在與平行,且到的距離相等的直線上,
設(shè)該直線為,其方程為,
因為線段的中點為,且,
點在圓的內(nèi)部或在圓上,
設(shè)直線角圓于,可得點在線段上運動,
因為表示的幾何意義為線段上的點到原點的距離的平方,
所以原點到直線的距離的平方為最小,
所以的最小值為,為最大,
聯(lián)立 ,解得,
當(dāng)與重合時,的最大值為,即的最大值為,
所以的取值范圍是.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某校甲、乙、丙三個年級的學(xué)生志愿者人數(shù)分別為240,160,160.現(xiàn)采用分層抽樣的方法從中抽。访瑢W(xué)去某敬老院參加獻(xiàn)愛心活動.
(Ⅰ)應(yīng)從甲、乙、丙三個年級的學(xué)生志愿者中分別抽取多少人?
(Ⅱ)設(shè)抽出的7名同學(xué)分別用A,B,C,D,E,F,G表示,現(xiàn)從中隨機抽取2名同學(xué)承擔(dān)敬老院的衛(wèi)生工作.
(i)試用所給字母列舉出所有可能的抽取結(jié)果;
(ii)設(shè)M為事件“抽取的2名同學(xué)來自同一年級”,求事件M發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.
O為AB的中點
(1)證明:AB⊥平面A1OC
(2)若AB=CB=2,平面ABC平面A1ABB1,求三棱柱ABC-A1B1C1的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin(2x+ ),f′(x)是f(x)的導(dǎo)函數(shù),則函數(shù)y=2f(x)+f′(x)的一個單調(diào)遞減區(qū)間是( )
A.[ , ]
B.[﹣ , ]
C.[﹣ , ]
D.[﹣ , ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)樣本數(shù)據(jù)x1 , x2 , …,x2017的方差是4,若yi=2xi﹣1(i=1,2,…,2017),則y1 , y2 , …y2017的方差為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程選講
在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為 (a>0,β為參數(shù)),以O(shè)為極點,x軸的正半軸為極軸,建立極坐標(biāo)系,直線l的極坐標(biāo)方程ρcos(θ﹣ )= .
(Ⅰ)若曲線C與l只有一個公共點,求a的值;
(Ⅱ)A,B為曲線C上的兩點,且∠AOB= ,求△OAB的面積最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列有關(guān)命題的說法正確的是( )
A.命題“若xy=0,則x=0”的否命題為:“若xy=0,則x≠0”
B.“若x+y=0,則x,y互為相反數(shù)”的逆命題為真命題
C.命題“x∈R,使得2x2﹣1<0”的否定是:“x∈R,均有2x2﹣1<0”
D.命題“若cosx=cosy,則x=y”的逆否命題為真命題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com