設(shè)復(fù)數(shù)z=
1-2i
m-i
(m∈R)在復(fù)平面上對應(yīng)的點(diǎn)為Z.
(1)若點(diǎn)Z位于直線y=3x上,求m的值;
(2)若點(diǎn)Z位于第一象限,求m的取值范圍.
考點(diǎn):復(fù)數(shù)代數(shù)形式的乘除運(yùn)算
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:由復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡z.
(1)由
1-2m
m2+1
=3×
m+2
m2+1
列方程求解m的值;
(2)由實部大于0且虛部小于0求解m的范圍.
解答: 解:z=
1-2i
m-i
=
(1-2i)(m+i)
(m-i)(m+i)
=
(m+2)+(1-2m)i
m2+1
=
m+2
m2+1
+
1-2m
m2+1
i

(1)若點(diǎn)Z位于直線y=3x上,則
1-2m
m2+1
=3×
m+2
m2+1
,解得m=-1,即m的值為-1;
(2)若點(diǎn)Z位于第一象限,則
1-2m
m2+1
>0
m+2
m2+1
<0
,解得-2<m<
1
2

即m的取值范圍是(-2,
1
2
)
點(diǎn)評:本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在直三菱柱ABC-A1B1C1中,CA⊥CB,CA=CB=1,AA1=2,且N是棱A1B1的中點(diǎn),
(Ⅰ)求證:A1B⊥C1N;
(Ⅱ)求直線A1B和直線B1C夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四邊形ABCD中,AB∥CD,∠ABD=30°,AB=2CD=2AD=2DE=2,DE⊥平面ABCD,EF∥BD,且BD=2EF.
(Ⅰ)求證:平面ADE⊥平面BDEF;
(Ⅱ)若二面角C-BF-D的大小為60°,求CF與平面ABCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD的底面ABCD為矩形,且PA=AD=1,AB=2,∠PAB=120°,∠PBC=90°.
(1)求證:平面PAD與平面PAB垂直;
(2)求直線PC與直線AB所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,地面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC,點(diǎn)E是PC的中點(diǎn).
(Ⅰ)求證:PA∥平面EDB;
(Ⅱ)求證:DE⊥平面PBC;
(Ⅲ)求二面角E-BD-C的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為
x=2cosα
y=2+2sinα
,(α為參數(shù)),M是C1上動點(diǎn),P點(diǎn)滿足
OP
=2
OM
,P點(diǎn)的軌跡為曲線C2
(1)求C2的方程;
(2)在以O(shè)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,射線θ=
π
3
與C1的異于極點(diǎn)的交點(diǎn)為A,與C2的異于極點(diǎn)的交點(diǎn)為B,求|AB|;
(3)若直線l:
x=4-
3
t
y=-t
(t為參數(shù))和曲線C2交于E、F兩點(diǎn),且EF的中點(diǎn)為G,又點(diǎn)H(4,0),求|HG|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校高一學(xué)生參加社會實踐活動,調(diào)查某種產(chǎn)品的生產(chǎn)和銷售情況時發(fā)現(xiàn):該產(chǎn)品的出廠價格在6元基礎(chǔ)上按月份隨正弦曲線波動,已知在一個周期內(nèi)3月份出廠價最高為8元,7月份出廠價最低為4元,而該商品在商店內(nèi)的銷售價格是在8元基礎(chǔ)山按月份隨正弦曲線波動的,并已知在一個周期內(nèi)5月份出廠價最高為10元,9月份銷售價最低為6元.學(xué)校超市每月進(jìn)這種商品m件,并且當(dāng)月售完.請你根據(jù)以上調(diào)查情況估計超市哪個月份盈利最大?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有四個數(shù),前三個數(shù)成等差數(shù)列,后三個數(shù)成等比數(shù)列,且這四個數(shù)的首末兩項之和為37,中間兩項和為
36,求這四個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知總體中的10個個體的數(shù)值由小到大依次為c,3,3,8,a,b,12,13.7,18.3,20,且總體的中位數(shù)為10,平均數(shù)為10,若要使該總體的方差最小,則abc=
 

查看答案和解析>>

同步練習(xí)冊答案