設(shè)隨機(jī)變量的分布列為下表所示且,則  (   )

0
1
2
3

0.1


0.1
    A.-0.2         B.0.1           C.0.2           D.-0.4
A
解:因?yàn)殡S機(jī)變量的分布列為下表所示且,且由分布列可知a+b=0.8,
a+2b+0.3=1.6,聯(lián)立方程組得到a+b=-0.2,選A
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某市舉行一次數(shù)學(xué)新課程骨干培訓(xùn)活動,共邀請15名使用不同版本教材的數(shù)學(xué)教師,具體情況數(shù)據(jù)如下表所示:
版本
人教A版
人教B版
性別
男教師
女教師
男教師
女教師
人數(shù)
6

4

 
現(xiàn)從這15名教師中隨機(jī)選出2名,則2人恰好是教不同版本的女教師的概率是.且.
(1)求實(shí)數(shù),的值
(2)培訓(xùn)活動現(xiàn)隨機(jī)選出2名代表發(fā)言,設(shè)發(fā)言代表中使用人教B版的女教師人數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)隨機(jī)變量~,又,則的值分別是( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)隨機(jī)試驗(yàn)的結(jié)果只有A,,令隨機(jī)變量 的方差為( )
A.PB.2P(1-P)C.-P(1-P) D.P(1-P)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

、隨機(jī)變量Y~,且,,則    
A. n="4" p=0.9B.n="9" p="0.4" C.n="18" p=0.2D.N="36" p=0.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

一個口袋中裝有大小相同的個紅球()和個白球,一次摸獎從中摸兩個球,兩個球的顏色不同則為中獎。
(Ⅰ)試用表示一次摸獎中獎的概率
(Ⅱ)記從口袋中三次摸獎(每次摸獎后放回)恰有一次中獎的概率為,求的最大值.
(Ⅲ)在(Ⅱ)的條件下,將個白球全部取出后,對剩下的個紅球全部作如下標(biāo)記:記上號的有個(),其余的紅球記上號,現(xiàn)從袋中任取一球。表示所取球的標(biāo)號,求的分布列、期望和方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)
為加強(qiáng)大學(xué)生實(shí)踐、創(chuàng)新能力和團(tuán)隊(duì)精神的培養(yǎng),促進(jìn)高等教育教學(xué)改革,教育部門主辦了全國大學(xué)生智能汽車競賽. 該競賽分為預(yù)賽和決賽兩個階段,參加決賽的隊(duì)伍按照抽簽方式?jīng)Q定出場順序.通過預(yù)賽,選拔出甲、乙等五支隊(duì)伍參加決賽.
(Ⅰ)求決賽中甲、乙兩支隊(duì)伍恰好排在前兩位的概率;
(Ⅱ)若決賽中甲隊(duì)和乙隊(duì)之間間隔的隊(duì)伍數(shù)記為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.(本小題滿分13分)
將3封不同的信投進(jìn)A、B、C、D這4個不同的信箱、假設(shè)每封信投入每個信箱的可能性相等.
(Ⅰ)求這3封信分別被投進(jìn)3個信箱的概率;
(Ⅱ)求恰有2個信箱沒有信的概率;
(Ⅲ)求A信箱中的信封數(shù)量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知隨機(jī)變量,且,,則  ▲   ▲  

查看答案和解析>>

同步練習(xí)冊答案