設(shè)數(shù)列{an}滿足a1=3,an+1=an2-2nan+2,n=1,2,3,…
(1)求a2,a3,a4的值,并猜想數(shù)列{an}的通項公式(不需證明);
(2)記Sn為數(shù)列{an}的前n項和,試求使得Sn<2n成立的最小正整數(shù)n,并給出證明.
(1)a2=5,a3=7,a4=9,猜想an=2n+1
(2)Sn=n2+2n 見解析
【解析】【解析】
(1)a2=5,a3=7,a4=9,猜想an=2n+1.
(2)Sn==n2+2n,
使得Sn<2n成立的最小正整數(shù)n=6.
證明:n≥6(n∈N*)時都有2n>n2+2n.
①n=6時,26>62+2×6,即64>48成立;
②假設(shè)n=k(k≥6,k∈N*)時,2k>k2+2k成立,那么2k+1=2·2k>2(k2+2k)=k2+2k+k2+2k>k2+2k+3+2k=(k+1)2+2(k+1),即n=k+1時,不等式成立;
由①、②可得,對于所有的n≥6(n∈N*)
都有2n>n2+2n成立.
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):7-6空間向量及運算(解析版) 題型:解答題
如圖,已知矩形ABCD和矩形ADEF所在的平面互相垂直,點M,N分別在對角線BD,AE上,且BM=BD,AN=AE.求證:MN∥平面CDE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):7-3空間點直線平面之間的位置關(guān)系(解析版) 題型:解答題
如圖,已知在空間四邊形ABCD中,E,F(xiàn)分別是AB,AD的中點,G,H分別是BC,CD上的點,且==2.求證:直線EG,F(xiàn)H,AC相交于一點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):7-2空間幾何體的表面積和體積(解析版) 題型:填空題
已知某幾何體的三視圖如圖所示,則該幾何體的表面積等于________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):7-2空間幾何體的表面積和體積(解析版) 題型:選擇題
如圖,某幾何體的正視圖是平行四邊形,側(cè)視圖和俯視圖都是矩形,則該幾何體的體積為( )
A.6 B.9 C.8 D.12
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):6-7數(shù)學(xué)歸納法(解析版) 題型:選擇題
在數(shù)列{an}中,an=1-+-+…+-,則ak+1等于( )
A.a(chǎn)k+ B.a(chǎn)k+-
C.a(chǎn)k+ D.a(chǎn)k+-
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):6-6直接證明與間接證明(解析版) 題型:填空題
凸函數(shù)的性質(zhì)定理為:如果函數(shù)f(x)在區(qū)間D上是凸函數(shù),則對于區(qū)間D內(nèi)的任意x1,x2,…,xn,有≤f(),已知函數(shù)y=sinx在區(qū)間(0,π)上是凸函數(shù),則在△ABC中,sinA+sinB+sinC的最大值為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):6-5合情推理與演繹推理(解析版) 題型:解答題
某少數(shù)民族的刺繡有著悠久的歷史,如圖(1)、(2)、(3)、(4)為她們刺繡最簡單的四個圖案,這些圖案都是由小正方形構(gòu)成,小正方形數(shù)越多刺繡越漂亮.現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設(shè)第n個圖形包含f(n)個小正方形.
(1)求出f(5)的值;
(2)利用合情推理的“歸納推理思想”,歸納出f(n+1)與f(n)之間的關(guān)系式,并根據(jù)你得到的關(guān)系式求出f(n)的表達式;
(3)求+++…+的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):6-1不等關(guān)系與不等式(解析版) 題型:解答題
已知a,b,c∈{正實數(shù)},且a2+b2=c2,當n∈N,n>2時比較cn與an+bn的大。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com