如圖,已知矩形中,,,將矩形沿對角線把折起,使移到點(diǎn),且在平面上的射影恰好在上.
(1)求證:;
(2)求證:平面平面;
(3)求二面角的余弦值.
(1)詳見解析;(2)詳見解析;(3)二面角的余弦值.
解析試題分析:(1)利用折疊后點(diǎn)在平面內(nèi)的射影點(diǎn)在棱上得到平面,從而得到,再結(jié)合即可證明平面,進(jìn)而證明;(2)由(1)中的結(jié)論平面并結(jié)合平面與平面垂直的判定定理即可證明平面平面;(3)先作,連接,利用(1)中的結(jié)論平面得到,于是得到平面,于是得到為二面角的平面角,然后在直角三角形中計算,進(jìn)而確定二面角的余弦值;另一種方法是利用空間向量法計算二面角的余弦值.
試題解析:(1)在平面上的射影在上,平面,
又平面,,
又,,平面,
又平面,;
(2)四邊形是矩形,,
由(1)知,,平面,
又平面,平面平面;
(3)平面,,在中,由,,得,,
過點(diǎn)作,垂足為點(diǎn),連接,
由平面,
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四邊形PCBM是直角梯形,∠PCB=90°,PM∥BC,PM=1,BC=2.又AC=1,∠ACB=120°,AB⊥PC,直線AM與直線PC所成的角為60°.
(1)求證:PC⊥AC;
(2)求二面角M﹣AC﹣B的余弦值;
(3)求點(diǎn)B到平面MAC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)棱PD^底面ABCD,PD=DC,點(diǎn)E是PC的中點(diǎn),作EF^PB交PB于點(diǎn)F,
(1)求證:PA//平面EDB;
(2)求證:PB^平面EFD;
(3)求二面角C-PB-D的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(如圖,在四棱錐P﹣ABCD中,底面是邊長為2的菱形,∠BAD=60°,對角線AC與BD相交于點(diǎn)O,PO為四棱錐P﹣ABCD的高,且,E、F分別是BC、AP的中點(diǎn).
(1)求證:EF∥平面PCD;
(2)求三棱錐F﹣PCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,AB是圓的直徑,PA垂直圓所在的平面,C是圓周上的一點(diǎn).
(1)求證:平面PAC⊥平面PBC;(6分)
(2)若AB=2,AC=1,PA=1,求二面角CPBA的余弦值.(6分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,幾何體中,四邊形為菱形,,,面∥面,、、都垂直于面,且,為的中點(diǎn),為的中點(diǎn).
(1)求幾何體的體積;
(2)求證:為等腰直角三角形;
(3)求二面角的大小.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com