如圖,四棱錐的底面是正方形,底面上一點(diǎn)

(1)求證:平面平面;

(2)設(shè),,求點(diǎn)到平面的距離.

 

【答案】

(1)見(jiàn)解析; (2)

【解析】

試題分析:(1)欲證平面EBD⊥平面SAC,只需證BD⊥面SAC,利用線面垂直的判定定理可證得;

(2)利用條件中的垂直關(guān)系和面面垂直的性質(zhì)定理,作出AF⊥平面SBD,即點(diǎn)A到平面SBD的距離,然后由等面積法求出距離.本題也可以用等體積法求距離,或用空間向量.

試題解析:證明(1)∵ABCD是正方形,∴BD⊥AC,∵SA⊥底面ABCD,BD⊂面ABCD,∴SA⊥BD,

∵SA∩AC=A,∴BD⊥面SAC,又∵BD⊥平面SAC,∴平面EBD⊥平面SAC;

(2)解:設(shè)BD與AC交于點(diǎn)O,連結(jié)SO,過(guò)點(diǎn)A作AF⊥SO于點(diǎn)F,∵BD⊥平面SAC,BD⊂面SBD,∴平面SBD⊥平面SAC,∵平面SBD∩平面SAC=SO,∴AF⊥平面SBD,即點(diǎn)A到平面SBD的距離AF.在直角三角形SAO中,由等面積法得,即:.

考點(diǎn):1.平面與平面之間的位置關(guān)系;2.面面垂直的性質(zhì)定理;3.點(diǎn)到平面的距離

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(09年朝陽(yáng)區(qū)二模文)(13分)

  如圖,四棱錐的底面是矩形,底面邊的中點(diǎn),與平面所成的角為,且,.

(Ⅰ) 求證:平面

(Ⅱ)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(09年山東實(shí)驗(yàn)中學(xué)診斷三理)(13分)如圖:四棱錐的底面是提醒,腰,平分且與垂直,側(cè)面都垂直于底面,平面與底面成60°角

(1)求證:

(2)求二面角的大小

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年福建省高三第八次月考文科數(shù)學(xué)試卷 題型:解答題

如圖,四棱錐的底面是平行四邊形,平面,,,

點(diǎn)上的點(diǎn),且.     

(Ⅰ)求證:

(Ⅱ)求的值,使平面;

(Ⅲ)當(dāng)時(shí),求三棱錐與四棱錐的體積之比.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年浙江省高三上學(xué)期摸底理科數(shù)學(xué) 題型:解答題

((本小題滿分14分)如圖,四棱錐的底面是正方形,側(cè)棱底面,,、分別是棱的中點(diǎn).

   (1)求證:;   (2) 求直線與平面所成的角的正切值

 

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011年四川省成都市高二3月月考數(shù)學(xué)試卷 題型:填空題

(本小題滿分12 分)

如圖,四棱錐的底面是邊長(zhǎng)為的菱形,

,平面,的中點(diǎn),O為底面對(duì)角線的交點(diǎn);

(1)求證:平面平面; 

(2)求二面角的正切值。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案