若橢圓=1(ab>0)與直線l: x+y=1在第一象限內(nèi)有兩個不同的交點,求ab所滿足的條件,并畫出點P(a,b)的存在區(qū)域.
答案略
由方程組消去y,整理得
(a2+b2)x2-2a2x+a2(1-b2)="0                           " ①
則橢圓與直線l在第一象限內(nèi)有兩個不同的交點的充要條件是方程①在區(qū)間(0,1)內(nèi)有兩相異實根,令f(x)=(a2+b2)x2-2a2x+a2(1-b2),則有


同時滿足上述四個條件的點P(a,b)的存在區(qū)域為如圖所示的陰影部分。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題


已知橢圓C:上動點到定點,其中的距離的最小值為1.(1)請確定M點的坐標(2)試問是否存在經(jīng)過M點的直線,使與橢圓C的兩個交點A、B滿足條件(O為原點),若存在,求出的方程,若不存在請說是理由。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知是橢圓的兩個焦點,為橢圓上一點,
(1)求橢圓離心率的范圍;
(2)求證:的面積只與橢圓的短軸長有關.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知兩點,以及一條直線,設長為的線段在直線上移動,求直線的交點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分15分)如圖△ABC為直角三角形,點M在y軸上,且,點C在x軸上移動,(I)求點B的軌跡E的方程;(II)過點的直線l與曲線E交于P、Q兩點,
的夾角為
的取值范圍;  (III)設以點N(0,m)為圓心,以
半徑的圓與曲線E在第一象限的交點H,若圓在點H處的
切線與曲線E在點H處的切線互相垂直,求實數(shù)m的值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知點,則線段AB的方程為(    )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)已知點A(-2,0),B(2,0),動點P滿足:,且. (I)求動點P的軌跡G的方程;(II)過點B的直線與軌跡G交于兩點M,N.試問在x軸上是否存在定點C ,使得 為常數(shù).若存在,求出點C的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)    
在橢圓上,直線與直線垂直,O為坐標原點,直線OP的傾斜角為,直線的傾斜角為.
(I)證明: 點是橢圓與直線的唯一交點;        
(II)證明:構成等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題


查看答案和解析>>

同步練習冊答案