已知函數(shù).
(Ⅰ)求函數(shù)的最小值;
(Ⅱ)求證:;
(Ⅲ)對(duì)于函數(shù)與定義域上的任意實(shí)數(shù),若存在常數(shù),使得和都成立,則稱(chēng)直線(xiàn)為函數(shù)與的“分界線(xiàn)”.設(shè)函數(shù),,與是否存在“分界線(xiàn)”?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
(Ⅰ)的最小值為;(Ⅱ)詳見(jiàn)解析;(Ⅲ),
【解析】
試題分析:(Ⅰ)求導(dǎo)得:,由此可得函數(shù)在上遞減,上遞增,
從而得的最小值為.
(Ⅱ)注意用第(Ⅰ)小題的結(jié)果.由(Ⅰ)知.這個(gè)不等式如何用?結(jié)合所在證的不等式可以看出,可以?xún)啥送瑫r(shí)乘以變形為:,把換成得,在這個(gè)不等式中令然后將各不等式相乘即得.
(Ⅲ)結(jié)合題中定義可知,分界線(xiàn)就是一條把兩個(gè)函數(shù)的圖象分開(kāi)的直線(xiàn).那么如何確定兩個(gè)函數(shù)是否存在分界線(xiàn)?顯然,如果兩個(gè)函數(shù)的圖象沒(méi)有公共點(diǎn),則它們有無(wú)數(shù)條分界線(xiàn),如果兩個(gè)函數(shù)至少有兩個(gè)公共點(diǎn),則它們沒(méi)有分界線(xiàn).所以接下來(lái)我們就研究這兩個(gè)函數(shù)是否有公共點(diǎn).為此設(shè).通過(guò)求導(dǎo)可得當(dāng)時(shí)取得最小值0,這說(shuō)明與的圖象在處有公共點(diǎn).如果它們存在分界線(xiàn),則這條分界線(xiàn)必過(guò)該點(diǎn).所以設(shè)與的“分界線(xiàn)”方程為.由于的最小值為0,所以,所以分界線(xiàn)必滿(mǎn)足和.下面就利用這兩個(gè)不等式來(lái)確定的值.
試題解析:(Ⅰ)解:因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014030705182849027478/SYS201403070519413965693890_DA.files/image005.png">,令,解得,
令,解得,
所以函數(shù)在上遞減,上遞增,
所以的最小值為. 3分
(Ⅱ)證明:由(Ⅰ)知函數(shù)在取得最小值,所以,即
兩端同時(shí)乘以得,把換成得,當(dāng)且僅當(dāng)時(shí)等號(hào)成立.
由得,,, ,
,.
將以上各式相乘得:
. 9分
(Ⅲ)設(shè).
則.
所以當(dāng)時(shí),;當(dāng)時(shí),.
因此時(shí)取得最小值0,則與的圖象在處有公共點(diǎn).
設(shè)與存在 “分界線(xiàn)”,方程為.
由在恒成立,
則在恒成立.
所以成立.因此.
下面證明成立.
設(shè),.
所以當(dāng)時(shí),;當(dāng)時(shí),.
因此時(shí)取得最大值0,則成立.
所以,. 14分
考點(diǎn):1、導(dǎo)數(shù)的應(yīng)用;2、函數(shù)與不等式;3、新定義概念.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2014屆福建省高二下學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)
(Ⅰ)求函數(shù)的最小正周期;
(Ⅱ)請(qǐng)用“五點(diǎn)法”作出函數(shù)在區(qū)間上的簡(jiǎn)圖.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年甘肅省度高二下學(xué)期第二次檢測(cè)考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù).
(Ⅰ)求的最小值;
(Ⅱ)若對(duì)所有都有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年福建省高三上學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿(mǎn)分15分)
已知函數(shù)
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若,試分別解答以下兩小題.
(ⅰ)若不等式對(duì)任意的恒成立,求實(shí)數(shù)的取值范圍;
(ⅱ)若是兩個(gè)不相等的正數(shù),且,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年四川省自貢市高三下學(xué)期第三次診斷性檢測(cè)理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù),.
(1)求曲線(xiàn)f(x)在點(diǎn)A處的切線(xiàn)方程;
(II)討論函數(shù)f(x)的單調(diào)性;
(III)是否存在實(shí)數(shù),使當(dāng)時(shí)恒成立?若存在,求 出實(shí)數(shù)a;若不存在,請(qǐng)說(shuō)明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:山西省忻州市2009-2010學(xué)年高一第二學(xué)期聯(lián)考試題(B類(lèi)) 題型:解答題
(本小題滿(mǎn)分12分)
已知函數(shù).
(1)求實(shí)數(shù)的值;
(2)當(dāng)xÎ時(shí),求函數(shù)的值域.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com