已知函數(shù),.
(Ⅰ)若函數(shù)和函數(shù)在區(qū)間上均為增函數(shù),求實(shí)數(shù)的取值范圍;
(Ⅱ)若方程有唯一解,求實(shí)數(shù)的值.
【解析】第一問,
當(dāng)0<x<2時(shí),,當(dāng)x>2時(shí),,
要使在(a,a+1)上遞增,必須
如使在(a,a+1)上遞增,必須,即
由上得出,當(dāng)時(shí),在上均為增函數(shù)
(Ⅱ)中方程有唯一解有唯一解
設(shè) (x>0)
隨x變化如下表
x |
|||
- |
+ |
||
極小值 |
由于在上,只有一個(gè)極小值,的最小值為-24-16ln2,
當(dāng)m=-24-16ln2時(shí),方程有唯一解得到結(jié)論。
(Ⅰ)解:
當(dāng)0<x<2時(shí),,當(dāng)x>2時(shí),,
要使在(a,a+1)上遞增,必須
如使在(a,a+1)上遞增,必須,即
由上得出,當(dāng)時(shí),在上均為增函數(shù) ……………6分
(Ⅱ)方程有唯一解有唯一解
設(shè) (x>0)
隨x變化如下表
x |
|||
- |
+ |
||
極小值 |
由于在上,只有一個(gè)極小值,的最小值為-24-16ln2,
當(dāng)m=-24-16ln2時(shí),方程有唯一解
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
3 |
π |
24 |
5π |
24 |
π |
24 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
11π |
6 |
| ||
2 |
3 |
π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
xn+2 | xn-2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
π |
2 |
A、f(x)=2sin(
| ||||
B、f(x)=2sin(
| ||||
C、f(x)=2sin(2x-
| ||||
D、f(x)=2sin(2x+
|
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com