【題目】已知函數(shù)
(1)若曲線(xiàn)在處的切線(xiàn)平行于直線(xiàn),求a的值;
(2)討論函數(shù)的單調(diào)性;
(3) 若,且對(duì)時(shí),恒成立,求實(shí)數(shù)的取值范圍
【答案】(1) (2) 當(dāng)時(shí),在遞增;當(dāng)時(shí),在遞減,在遞增; (3)
【解析】試題分析:(1)根據(jù)曲線(xiàn)在處的切線(xiàn)平行于直線(xiàn),則,得出a值;(2)對(duì)函數(shù)求導(dǎo),討論,兩種情況得單調(diào)性(3)對(duì)時(shí),恒成立可選擇變量分離,構(gòu)造新函數(shù)研究最值,得結(jié)果.
試題解析:
(1) 定義域?yàn)?/span>
直線(xiàn)的斜率為,
(2)定義域?yàn)?/span>,,若,則在遞增;
若,令得;令得;
綜上得:當(dāng)時(shí),在遞增;當(dāng)時(shí),在遞減,在遞增;
(3) ,且對(duì)時(shí),恒成立
. 即
設(shè)
,
當(dāng)時(shí), ,為增函數(shù)
當(dāng)時(shí), ,為減函數(shù)
所以當(dāng)時(shí),函數(shù)在上取到最大值,且
所以 所以
所以實(shí)數(shù)的取值范圍為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn),求:
(Ⅰ)過(guò)點(diǎn)與原點(diǎn)距離為2的直線(xiàn)的方程;
(Ⅱ)過(guò)點(diǎn)與原點(diǎn)距離最大的直線(xiàn)的方程,最大距離是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)組織了一次高二文科學(xué)生數(shù)學(xué)學(xué)業(yè)水平模擬測(cè)試,學(xué)校從測(cè)試合格的男、女生中各隨機(jī)抽取100人的成績(jī)進(jìn)行統(tǒng)計(jì)分析,分別制成了如圖所示的男生和女生數(shù)學(xué)成績(jī)的頻率分布直方圖.
(Ⅰ)若所得分?jǐn)?shù)大于等于80分認(rèn)定為優(yōu)秀,求男、女生優(yōu)秀人數(shù)各有多少人?
(Ⅱ)在(Ⅰ)中的優(yōu)秀學(xué)生中用分層抽樣的方法抽取5人,從這5人中任意任取2人,求至少有一名男生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù), = .
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)有兩個(gè)零點(diǎn).
(1)求滿(mǎn)足條件的最小正整數(shù)的值;
(2)求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在某港口處獲悉,其正東方向距離20n mile的處有一艘漁船遇險(xiǎn)等待營(yíng)救,此時(shí)救援船在港口的南偏西30°距港口10n mile的C處,救援船接到救援命令立即從C處沿直線(xiàn)前往B處營(yíng)救漁船.
(1)求接到救援命令時(shí)救援船距漁船的距離;
(2)試問(wèn)救援船在C處應(yīng)朝北偏東多少度的方向沿直線(xiàn)前往B處救援?(已知)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】用1、2、3、4、5、6這六個(gè)數(shù)字可組成多少個(gè)無(wú)重復(fù)數(shù)字且不能被5整除的五位數(shù)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),(其中為在點(diǎn)處的導(dǎo)數(shù), 為常數(shù)).
(1)求的值;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)設(shè)函數(shù),若函數(shù)在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), .
(Ⅰ)證明: ,直線(xiàn)都不是曲線(xiàn)的切線(xiàn);
(Ⅱ)若,使成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱柱中, 是正三角形,四邊形是矩形,且.
(1)求證:平面平面;
(2)若點(diǎn)在線(xiàn)段上,且,當(dāng)三棱錐的體積為時(shí),求實(shí)數(shù)的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com