【題目】已知AB是圓O的直徑,C,D是圓上不同兩點(diǎn),且CD∩AB=H,AC=AD,PA⊥圓O所在平面.
(Ⅰ)求證:PB⊥CD;
(Ⅱ)若PB=,∠PBA=,∠CAD=,求H到平面PBD的距離.
【答案】(Ⅰ)證明見解析;(Ⅱ) .
【解析】試題分析:(Ⅰ)由AB是圓O的直徑知∠ACB=∠ADB=90°,從而證明PB⊥CD.(Ⅱ)過點(diǎn)P作PB的垂線,過點(diǎn)H作PB的垂線,分別交PB于點(diǎn)E,F(xiàn);求出H到平面PBD的距離.
試題解析:
(Ⅰ)證明:∵AB是圓O的直徑,
∴∠ACB=∠ADB=,
∵AC=AD,∴Rt△ACB≌Rt△ADB,∴AB⊥CD,
又∵PA⊥圓O所在平面,CD在圓O所在平面內(nèi),
∴PA⊥CD,
∵PA∩AB=A,∴CD⊥平面PAB,∴PB⊥CD.
(Ⅱ)解:過點(diǎn)A作PB的垂線,過點(diǎn)H作PB的垂線,分別交PB于E,F,
∵Rt△PAB中,∠PBA=,PB=2,
∴PA=AB=2,∴AE=ABsin=2·=,
又∵∠CAB=∠DAB=,∴AC=1,AD=1
∵CH⊥AH,∴AH=,
∴BH=,HD=,BD=,PD=
∴VH-PBD=VP-HDB=××××2=
S△PBD=××=,
∴H到平面PBD的距離為=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司研制出了一種新產(chǎn)品,試制了一批樣品分別在國(guó)內(nèi)和國(guó)外上市銷售,并且價(jià)格根據(jù)銷售情況不斷進(jìn)行調(diào)整,結(jié)果40天內(nèi)全部銷完.公司對(duì)銷售及銷售利潤(rùn)進(jìn)行了調(diào)研,結(jié)果如圖所示,其中圖①(一條折線)、圖②(一條拋物線段)分別是國(guó)外和國(guó)內(nèi)市場(chǎng)的日銷售量與上市時(shí)間的關(guān)系,圖③是每件樣品的銷售利潤(rùn)與上市時(shí)間的關(guān)系.
(1)分別寫出國(guó)外市場(chǎng)的日銷售量f(t)與上市時(shí)間t的關(guān)系及國(guó)內(nèi)市場(chǎng)的日銷售量g(t)與上市時(shí)間t的關(guān)系;
(2)國(guó)外和國(guó)內(nèi)的日銷售利潤(rùn)之和有沒有可能恰好等于6 300萬元?若有,請(qǐng)說明是上市后的第幾天;若沒有,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)圖象上一點(diǎn)處的切線方程為.
(1)求的值;
(2)若方程在內(nèi)有兩個(gè)不等實(shí)根,求的取值范圍(其中
為自然對(duì)數(shù)的底).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|ax-2|.
(1)當(dāng)a=2時(shí),解不等式f(x)>x+1;
(2)若關(guān)于x的不等式f(x)+f(-x)< 有實(shí)數(shù)解,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某運(yùn)輸公司接受了向一地區(qū)每天至少運(yùn)送180 t物資的任務(wù),該公司有8輛載重為6 t的A型卡車和4輛載重為10 t的B型卡車,有10名駕駛員,每輛卡車每天往返的次數(shù)為A型卡車4次,B型卡車3次,每輛卡車每天往返的費(fèi)用為A型卡車320元,B型卡車504元,則公司如何調(diào)配車輛,才能使公司所花的費(fèi)用最低,最低費(fèi)用為________元.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)及其導(dǎo)數(shù)f′(x),若存在x0,使得f(x0)=f′(x0),則稱x0是f(x)的一個(gè)“巧值點(diǎn)”,則下列函數(shù)中有“巧值點(diǎn)”的是________.
①f(x)=x2;②f(x)=e-x;③f(x)=lnx;④f(x)=tanx;⑤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2016·山東)設(shè)f(x)=xlnx-ax2+(2a-1)x,a∈R.
(1)令g(x)=f′(x),求g(x)的單調(diào)區(qū)間;
(2)已知f(x)在x=1處取得極大值,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2017·洛陽市統(tǒng)考)已知數(shù)列{an}的前n項(xiàng)和為Sn,an≠0,a1=1,且2anan+1=4Sn-3(n∈N*).
(1)求a2的值并證明:an+2-an=2;
(2)求數(shù)列{an}的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為 (α為參數(shù)),直線l的參數(shù)方程為 (t為參數(shù)),在以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,過極點(diǎn)O的射線與曲線C相交于不同于極點(diǎn)的點(diǎn)A,且點(diǎn)A的極坐標(biāo)為(2,θ),其中θ∈.
(1)求θ的值;
(2)若射線OA與直線l相交于點(diǎn)B,求|AB|的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com