已知m、n是兩條不重合的直線,α、β、γ是三個兩兩不重合的平面,給出下列四個命題:
①若m⊥α,m⊥β,則α∥β;
②若α⊥γ,β⊥γ,則α∥β;
③若m?α,n?β,m∥n,則α∥β;
④若m、n是異面直線,m?α,m∥β,n?β,n∥α,則α∥β.
其中正確的是(  )
A、①和②B、①和③
C、③和④D、①和④
考點:命題的真假判斷與應用
專題:空間位置關系與距離
分析:根據(jù)面面平行和垂直的性質(zhì)分別進行判斷即可得到結(jié)論.
解答: 解:①根據(jù)線面垂直的性質(zhì)可知若m⊥α,m⊥β,則α∥β成立;
②若α⊥γ,β⊥γ,則α∥β或α與β相交;故②不成立;
③根據(jù)面面平行的可知,當m與n相交時,α∥β,若兩直線不相交時,結(jié)論不成立;
④若m、n是異面直線,m?α,m∥β,n?β,n∥α,則α∥β成立.
故正確的是①④,
故選:D
點評:本題主要考查空間直線和平面,平面和平面直線平行和垂直的判斷,根據(jù)相應的判定定理和性質(zhì)定理是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=
1
2x+2
的值域為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(2,1),
b
=(1,-2),
c
=(m,2);若(2
a
-3
b
)⊥
c
,則m=( 。
A、-4B、-16C、4D、16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=m(x+m)(2x-m-6),g(x)=(
1
2
x-2,命題p:?x∈R,f(x)<0或g(x)<0.命題q:若方程f(x)=0的兩根為α,β,則α<1且β>1.如果命題p∧q為真命題,則實數(shù)m的取值范圍是( 。
A、(-8,-2)∪(-1,0)
B、(-8,-2)∪(-1,1)
C、(-8,-4)∪(-2,0)
D、(-8,-4)∪(-1,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=
x-1(x>0)
ex+3(x≤0)
的零點個數(shù)為( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

把函數(shù)y=sin(2x+
π
4
)的圖象向右平移
π
8
個單位,再把所得圖象上各點的橫坐標縮短到原來的
1
2
,則所得圖象的函數(shù)解析式是( 。
A、y=sin(4x+
3
8
π)
B、y=sin(4x+
π
8
C、y=sin4x
D、y=sinx

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(理科)將A、B、C、D、E五種不同文件隨機地放入編號依次為1,2,3,4,5,6,7的七個抽屜內(nèi),每個抽屜至多放一種文件,則文件A、B被放在相鄰抽屜內(nèi)且文件C、D被放在不相鄰的抽屜內(nèi)的放法種數(shù)為(  )
A、240B、480
C、840D、960

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列函數(shù)中,定義域是R且為增函數(shù)的是( 。
A、y=e-x
B、y=x
C、y=lnx
D、y=-
1
x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列各數(shù)中最小的數(shù)是( 。
A、85(9)
B、210(6)
C、1000(4)
D、111111(2)

查看答案和解析>>

同步練習冊答案