在三棱錐中,、、兩兩垂直,且,,點是棱的中點.
(1)求異面直線所成角的余弦值;
(2)求二面角的余弦值.

(1)以O為原點OB,OC,OA所在直線分別為x軸,y軸,z軸建立空間直角坐標系,則O(0,0,0),           1分
        2分    設異面直線BE與AC所成角為
     4分
(2)易知平面BEC的一個法向量為    5分
不妨設為平面ABE的一個法向量又

                                                  …………7分
                                …………9分
因為二面角A-BE-C為鈍二面角,所以二面角A-BE-C的余弦值-   

解析

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

本小題滿分12分)

已知三棱錐P­ABC中,PA⊥平面ABC,AB⊥AC,PA=AC=AB,
N為AB上一點,AB=4AN,M,S分別為PB,BC的中點.
(I)證明:CM⊥SN;(II)求SN與平面CMN所成角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(12分)在如圖所示的幾何體中,四邊形ABCD是等腰梯形,AB∥CD,∠DAB=60°,F(xiàn)C⊥平面ABCD,AE⊥BD,CB=CD=CF.

(1)求證:BD⊥平面AED;(4分)
(2)求二面角F-BD-C的余弦值.(8分)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
如圖,在三棱錐S-ABC中,BC⊥平面SAC,AD⊥SC.
(I)求證:AD⊥平面SBC;
(II)試在SB上找一點E,使得BC//平面ADE,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在直三棱柱ABC-A1B1C1中,AC=BC=2,AA1=2,∠ACB=900,M是AA1的中點,N是BC1的中點.

(1)求證:MN//平面A1B1C1;
(2)求二面角B-C1M-C的平面角余弦值的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)如圖在底面是矩形的四棱錐P-ABCD中,PA⊥底面ABCD, E、F分別是PC、PD的中點,求證:(1)EF∥平面PAB;
(2)平面PAD⊥平面PDC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.(本小題滿分13分)如圖,平面⊥平面,,,

直線與直線所成的角為,又。     
(1)求證:
(2)求二面角的余弦值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

已知向量,,則以,為鄰邊的平行四邊形的面積為(  )

A.B.C.4D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分10分)
如圖:是⊙的直徑,垂直于⊙所在的平面,是圓周上不同于的任意一點,
(1)求證:平面.
(2)圖中有幾個直角三角形.

查看答案和解析>>

同步練習冊答案