設(shè)a=
1+tan10°
1-tan10°
,b=tan10°+tan50°+
3
tan10°•tan50°
,則下列各式正確的為( 。
A、a<b<
a2+b2
2
B、a<
a2+b2
2
<b
C、b<
a2+b2
2
<a
D、b<a<
a2+b2
2
考點:兩角和與差的正切函數(shù)
專題:三角函數(shù)的求值,三角函數(shù)的圖像與性質(zhì),不等式的解法及應(yīng)用
分析:逆用兩角和的正切,可求得a=tan55°,b=tan60°=
3
,再利用正切函數(shù)的單調(diào)性質(zhì)結(jié)合基本不等式即可判斷答案.
解答: 解:∵a=
1+tan10°
1-tan10°
=tan(45°+10°)=tan55°,
b=tan10°+tan50°+
3
tan10°•tan50°
=tan(10°+50°)[1-tan10°tan50°]+
3
tan10°•tan50°
=tan60°=
3
,
又y=tanx在(0°,90°)上單調(diào)遞增,
∴1=tan45°<tan55°<tan60°,即1<a<b,又
a2+b2
2
≥ab>b,
故選:A.
點評:本題考查兩角和與差的正切函數(shù),考查正切函數(shù)的單調(diào)性質(zhì)與基本不等式的應(yīng)用,考查運算求解能力,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

由下列條件求雙曲線的標準方程:
(1)兩焦點坐標為(-5,0),(5,0),雙曲線上一點P與兩焦點距離的差的絕對值為8;
(2)兩焦點坐標為(0,-6),(0,6),且雙曲線過點(-5,6).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)a>1,則函數(shù)y=
1
ax-1
的圖象大致為( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sin2x+2
3
sinxcosx+3cos2x.
(1)求f(x)的最大值及取最大值時x的取值集合;
(2)在△ABC中,若f(A)=3,b+c=
3
a,求角B.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點A(2,-3),B(-3,-2),直線l:y=-kx+k+1與線段AB相交,則k的范圍是( 。
A、k≤-
3
4
或k≥4
B、-
3
4
≤k≤4
C、k≤-4或k≥
3
4
D、-4≤k≤
3
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

lim
x→3
x-3
x2-9
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=3cos2
x
2
+sin2
x
2
-2,則f′(
3
)
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
x-1
 若f(a)=3,則實數(shù)a=(  )
A、7B、8C、9D、10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=Asin(x+
π
6
)+a(A>0,A,a為常數(shù))的圖象上有四個不同的點(x1,-1),(x2,-1),(x3,2),(x4,2),其中x1∈[-
π
6
,
11π
6
](i=1,2,3,4),且|x1-x2|=|x3-x4|≠0,則下列說法不正確的是( 。
A、a=
1
2
時,函數(shù)f(x)的解析式可以是y=Acos(x-
π
3
)+
1
2
B、A>
3
2
時,直線x=
3
是函數(shù)f(x)的圖象的一條對稱軸
C、A≥
3
2
時,點(
π
3
,
1
2
)是函數(shù)f(x)的圖象的一個對稱中心
D、將函數(shù)y=sin(x+
π
6
)+a的圖象上所有點的橫坐標保持不變,縱坐標伸長為原來的A倍可以得到函數(shù)f(x)的圖象

查看答案和解析>>

同步練習冊答案