精英家教網 > 高中數學 > 題目詳情

【題目】已知橢圓C的方程為,P在橢圓上,橢圓的左頂點為A,左、右焦點分別為,的面積是的面積的倍.

(1)求橢圓C的方程;(2)直線與橢圓C交于M,N,連接并延長交橢圓C于D,E,連接DE,指出之間的關系,并說明理由.

【答案】(1) ; (2).

【解析】

(1)由已知面積倍數關系,得,結合橢圓a,b,c的關系,得b=c,根據點在橢圓上,可得求得a,b的值,即可得橢圓方程;

(2)A(x0,y0),則B(-x0,-y0),設D(x1,y1),E(x2,y2),可得,,進而求得=3.

(1)由 的面積是的面積的 倍,可得,即

,所以 ,

在橢圓上,可得 ,所以,可得 ,

所以橢圓的方程為

(2)設 ,則,

故直線MD的方程為 ,

消去整理得

,代入上式化簡得

,則,所以,

又直線NE的方程為,同理可得

所以

,所以

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=a﹣x2(1≤x≤2)與g(x)=x+2的圖象上存在關于x軸對稱的點,則實數a的取值范圍是(
A.[﹣ ,+∞)
B.[﹣ ,0]
C.[﹣2,0]
D.[2,4]

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖是秦九韶算法的一個程序框圖,則輸出的S為(
A.a1+x0(a3+x0(a0+a2x0))的值
B.a3+x0(a2+x0(a1+a0x0))的值
C.a0+x0(a1+x0(a2+a3x0))的值
D.a2+x0(a0+x0(a3+a1x0))的值

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中P﹣ABCD,AB=BC=CD=DA,∠BAD=60°,AQ=QD,△PAD是正三角形.
(1)求證:AD⊥PB;
(2)已知點M是線段PC上,MC=λPM,且PA∥平面MQB,求實數λ的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】給出下列三種說法:

①命題p:x0∈R,tan x0=1,命題q:x∈R,x2-x+1>0,則命題“p∧()”是假命題.

②已知直線l1:ax+3y-1=0,l2:x+by+1=0,則l1⊥l2的充要條件是=-3.

③命題“若x2-3x+2=0,則x=1”的逆否命題為“若x≠1,則x2-3x+2≠0”.

其中所有正確說法的序號為________________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】閱讀如圖所示的程序框圖,若輸入a的值為 ,則輸出的k值是(

A.9
B.10
C.11
D.12

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】甲,乙兩臺機床同時生產一種零件,其質量按測試指標劃分:指標大于或等于100為優(yōu)品,大于等于90且小于100為合格品,小于90為次品,現隨機抽取這兩臺車床生產的零件各100件進行檢測,檢測結果統計如下:

測試指標

機床甲

8

12

40

32

8

機床乙

7

18

40

29

6

(1)試分別估計甲機床、乙機床生產的零件為優(yōu)品的概率;

(2)甲機床生產一件零件,若是優(yōu)品可盈利160元,合格品可盈利100元,次品則虧損20元;假設甲機床某天生產50件零件,請估計甲機床該天的日利潤(單位:元);

(3)從甲、乙機床生產的零件指標在內的零件中,采用分層抽樣的方法抽取5件,從這5件中任選2件進行質量分析,求這2件都是乙機床生產的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數f(x)=lnx﹣ ax2﹣bx,若x=1是f(x)的極大值點,則a的取值范圍為(
A.(﹣1,0)
B.(﹣1,+∞)
C.(0,+∞)
D.(﹣∞,﹣1)∪(0,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數f′(x)是奇函數f(x)(x∈R)的導函數,f(﹣1)=0,當x>0時,xf′(x)﹣f(x)<0,則使得f(x)>0成立的x的取值范圍是(
A.(﹣∞,﹣1)∪(0,1)
B.(﹣1,0)∪(1,+∞)
C.(﹣∞,﹣1)∪(﹣1,0)
D.(0,1)∪(1,+∞)

查看答案和解析>>

同步練習冊答案