【題目】設函數(shù)f(x)=aex﹣xlnx,其中a∈R,e是自然對數(shù)的底數(shù).
(Ⅰ)若f(x)是(0,+∞)上的增函數(shù),求a的取值范圍;
(Ⅱ)若 ,證明:f(x)>0.

【答案】解:(Ⅰ)f'(x)=aex﹣(1+lnx),f(x)是(0,+∞)上的增函數(shù)等價于f'(x)≥0恒成立.

令f'(x)≥0,得 ,令 (x>0).以下只需求g(x)的最大值.

求導得 ,

, ,h(x)是(0,+∞)上的減函數(shù),

又h(1)=0,故1是h(x)的唯一零點,

當x∈(0,1),h(x)>0,g'(x)>0,g(x)遞增;

當x∈(1,+∞),h(x)<0,g'(x)<0,g(x)遞減;

故當x=1時,g(x)取得極大值且為最大值 ,

所以 ,即a的取值范圍是

證明:(Ⅱ)f(x)>0

令F(x)= (x>0),以下證明當 時,F(xiàn)(x)的最小值大于0.

求導得 =

①當0<x≤1時,F(xiàn)'(x)<0,F(xiàn)(x)≥F(1)=ae>0;

②當x>1時, ,令 ,

則G'(x)=ex ,又 =

取m∈(1,2)且使 ,即 ,則 <e2﹣e2=0,

因為G(m)G(2)<0,故G(x)存在唯一零點x0∈(1,2),

即F(x)有唯一的極值點且為極小值點x0∈(1,2),又 ,

,即 ,故

因為 ,故F(x0)是(1,2)上的減函數(shù).

所以F(x0)>F(2)=1﹣ln2>0,所以F(x)>0.

綜上,當 時,總有f(x)>0


【解析】(Ⅰ)f'(x)=aex﹣(1+lnx),f(x)是(0,+∞)上的增函數(shù)等價于f'(x)≥0恒成立.令f'(x)≥0,得 ,令 (x>0),求導得 ,令 , ,由此能求出a的取值范圍.(Ⅱ)f(x)>0 .令F(x)= (x>0),當 時,F(xiàn)(x)的最小值大于0.由此利用導數(shù)性質能證明當 時,總有f(x)>0.
【考點精析】關于本題考查的利用導數(shù)研究函數(shù)的單調性和函數(shù)的最大(小)值與導數(shù),需要了解一般的,函數(shù)的單調性與其導數(shù)的正負有如下關系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調遞增;(2)如果,那么函數(shù)在這個區(qū)間單調遞減;求函數(shù)上的最大值與最小值的步驟:(1)求函數(shù)內(nèi)的極值;(2)將函數(shù)的各極值與端點處的函數(shù)值,比較,其中最大的是一個最大值,最小的是最小值才能得出正確答案.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某位同學進行寒假社會實踐活動,為了對白天平均氣溫與某奶茶店的某種飲料銷量之間的關系進行分析研究,他分別記錄了1月11日至1月15日的白天平均氣溫x(°C)與該小賣部的這種飲料銷量y(杯),得到如下數(shù)據(jù):

1月11日

1月12日

1月13日

1月14日

1月15日

平均氣溫x(°C)

9

10

12

11

8

銷量y(杯)

23

25

30

26

21

(Ⅰ)若先從這五組數(shù)據(jù)中抽出2組,求抽出的2組數(shù)據(jù)恰好是相鄰2天數(shù)據(jù)的概率;
(Ⅱ)請根據(jù)所給五組數(shù)據(jù),求出y關于x的線性回歸方程 = x+
(Ⅲ)根據(jù)(Ⅱ)中所得的線性回歸方程,若天氣預報1月16日的白天平均氣溫7(°C),請預測該奶茶店這種飲料的銷量.
(參考公式: = =

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列四個命題中,正確的有__________

①如果、與平面共面且,,那么就是平面的一個法向量;

②設實數(shù),滿足;實數(shù),滿足的充分不必要條件;

③已知橢圓與雙曲線的焦點重合,,分別為,的離心率,,

④菱形是圓的內(nèi)接四邊形或是圓的外切四邊形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐S﹣ABC中,SA⊥底面ABC,AC=AB=SA=2,AC⊥AB,D,E分別是AC,BC的中點,F(xiàn)在SE上,且SF=2FE.
(1)求證:AF⊥平面SBC;
(2)在線段上DE上是否存在點G,使二面角G﹣AF﹣E的大小為30°?若存在,求出DG的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若(x+ n的展開式中各項的系數(shù)之和為81,且常數(shù)項為a,則直線y= x與曲線y=x2所圍成的封閉區(qū)域面積為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】長郡中學早上8點開始上課,若學生小典與小方勻在早上7:40至8:00之間到校,且兩人在該時間段的任何時刻到校都是等可能的,則小典比小方至少早5分鐘到校的概率為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ex(其中e為自然對數(shù)的底數(shù)),g(x)= x+m(m,n∈R).
(1)若T(x)=f(x)g(x),m=1﹣ ,求T(x)在[0,1]上的最大值;
(2)若m=﹣ ,n∈N* , 求使f(x)的圖象恒在g(x)圖象上方的最大正整數(shù)n.[注意:7<e2 ].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】微信運動和運動手環(huán)的普及,增強了人民運動的積極性,每天一萬步稱為一種健康時尚,某中學在全校范圍內(nèi)內(nèi)積極倡導和督促師生開展“每天一萬步”活動,經(jīng)過幾個月的扎實落地工作后,學校想了解全校師生每天一萬步的情況,學校界定一人一天走路不足4千步為不健康生活方式,不少于16千步為超健康生活方式者,其他為一般生活方式者,學校委托數(shù)學組調查,數(shù)學組采用分層抽樣的辦法去估計全校師生的情況,結合實際及便于分層抽樣,認定全校教師人數(shù)為200人,高一學生人數(shù)為700人,高二學生人數(shù)600人,高三學生人數(shù)500,從中抽取n人作為調查對象,得到了如圖所示的這n人的頻率分布直方圖,這n人中有20人被學校界定為不健康生活方式者.
(1)求這次作為抽樣調查對象的教師人數(shù);
(2)根據(jù)頻率分布直方圖估算全校師生每人一天走路步數(shù)的中位數(shù)(四舍五入精確到整數(shù)步);
(3)校辦公室欲從全校師生中速記抽取3人作為“每天一萬步”活動的慰問對象,計劃學校界定不健康生活方式者鞭策性精神鼓勵0元,超健康生活方式者表彰獎勵20元,一般生活方式者鼓勵性獎勵10元,利用樣本估計總體,將頻率視為概率,求這次校辦公室慰問獎勵金額X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】高三第一學期期末四校聯(lián)考數(shù)學第I卷中共有8道選擇題,每道選擇題有4個選項,其中只有一個是正確的;評分標準規(guī)定:“每題只選一項,答對得5分,不答或答錯得0分.”某考生每道題都給出一個答案,已確定有5道題的答案是正確的,而其余選擇題中,有1道題可判斷出兩個選項是錯誤的,有一道可以判斷出一個選項是錯誤的,還有一道因不了解題意只能亂猜,試求出該考生:
(1)得40分的概率;
(2)得多少分的可能性最大?
(3)所得分數(shù)ξ的數(shù)學期望.

查看答案和解析>>

同步練習冊答案