【題目】某飲水機(jī)廠生產(chǎn)的A,B,C,D四類產(chǎn)品,每類產(chǎn)品均有經(jīng)濟(jì)型和豪華型兩種型號,某一月的產(chǎn)量如下表(單位:臺)
A | B | C | D | |
經(jīng)濟(jì)型 | 5000 | 2000 | 4500 | 3500 |
豪華型 | 2000 | 3000 | 1500 | 500 |
(1)在這一月生產(chǎn)的飲水機(jī)中,用分層抽樣的方法抽取n臺,其中有A類產(chǎn)品49臺,求n的值;
(2)用隨機(jī)抽樣的方法,從C類經(jīng)濟(jì)型飲水機(jī)中抽取10臺進(jìn)行質(zhì)量檢測,經(jīng)檢測它們的得分如下:7.9,9.4,7.8,9.4,8.6,9.2,10,9.4,7.9,9.4,從D類經(jīng)濟(jì)型飲水機(jī)中抽取10臺進(jìn)行質(zhì)量檢測,經(jīng)檢測它們的得分如下:8.9,9.3,8.8,9.2,8.6,9.2,9.0,9.0,8.4,8.6,根據(jù)分析,你會選擇購買C類經(jīng)濟(jì)型飲水機(jī)與D類經(jīng)濟(jì)型飲水機(jī)中哪類產(chǎn)品.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知函數(shù), +1.
(1)若,曲線y=f(x)與在x=0處有相同的切線,求b;
(2)若,求函數(shù)的單調(diào)遞增區(qū)間;
(3)若對任意恒成立,求b的取值區(qū)間
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】劉老師是一位經(jīng)驗豐富的高三理科班班主任,經(jīng)長期研究,他發(fā)現(xiàn)高中理科班的學(xué)生的數(shù)學(xué)成績(總分150分)與理綜成績(物理、化學(xué)與生物的綜合,總分300分)具有較強(qiáng)的線性相關(guān)性,以下是劉老師隨機(jī)選取的八名學(xué)生在高考中的數(shù)學(xué)得分x與理綜得分y(如下表):
學(xué)生編號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
數(shù)學(xué)分?jǐn)?shù)x | 52 | 64 | 87 | 96 | 105 | 123 | 132 | 141 |
理綜分?jǐn)?shù)y | 112 | 132 | 177 | 190 | 218 | 239 | 257 | 275 |
參考數(shù)據(jù)及公式: .
(1)求出y關(guān)于x的線性回歸方程;
(2)若小汪高考數(shù)學(xué)110分,請你預(yù)測他理綜得分約為多少分?(精確到整數(shù)位);
(3)小金同學(xué)的文科一般,語文與英語一起能穩(wěn)定在215分左右.如果他的目標(biāo)是在
高考總分沖擊600分,請你幫他估算他的數(shù)學(xué)與理綜大約分別至少需要拿到多少分?(精確到整數(shù)位).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】運貨卡車以每小時千米的速度勻速行駛千米,按交通法規(guī)則限制(單位:千米/小時),假設(shè)汽油的價格是每升元,而汽車每小時耗油升,司機(jī)工資是每小時元.
(1)求這次行車總費用關(guān)于的表達(dá)式;
(2)當(dāng)為何值時,這次行車的總費用最低,并求出最低費用的值.(精確到)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為橢圓的右焦點,點在上,且軸.
(1)求的方程;
(2)過的直線交于兩點,交直線于點.判定直線的斜率是否依次構(gòu)成等差數(shù)列?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)生產(chǎn)一種產(chǎn)品,質(zhì)量測試分為:指標(biāo)不小于90為一等品,不小于80小于90為二等品,小于80為三等品,每件一等品盈利50元,每件二等品盈利30元,每件三等品虧損10元,現(xiàn)對學(xué)徒工甲和正式工人乙生產(chǎn)的產(chǎn)品各100件的檢測結(jié)果統(tǒng)計如下:
測試指標(biāo) | ||||||
甲 | 5 | 15 | 35 | 35 | 7 | 3 |
乙 | 3 | 7 | 20 | 40 | 20 | 10 |
根據(jù)上表統(tǒng)計得到甲、乙生產(chǎn)產(chǎn)品等級的頻率分別估計為他們生產(chǎn)產(chǎn)品等級的概率.
(1)求出乙生產(chǎn)三等品的概率;
(2)求出甲生產(chǎn)一件產(chǎn)品,盈利不小于30元的概率;
(3)若甲、乙一天生產(chǎn)產(chǎn)品分別為40件和30件,估計甲、乙兩人一天共為企業(yè)創(chuàng)收多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),函數(shù).
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在區(qū)間上有唯一零點,試求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知曲線(為參數(shù)),在以原點為極點,軸的非
負(fù)半軸為極軸建立的極坐標(biāo)系中,直線的極坐標(biāo)方程為.
(1)求曲線的普通方程和直線的直角坐標(biāo)方程;
(2)過點且與直線平行的直線交于,兩點,求點到,兩點的距離之積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com