正三棱錐P-ABC的高PO=4,斜高為2
5
,經(jīng)過PO的中點(diǎn)且平行于底面的截面的面積
 
分析:先求正三棱錐P-ABC的底面面積,再求經(jīng)過PO的中點(diǎn)且平行于底面的截面的面積.
解答:精英家教網(wǎng)解:由題意正三棱錐P-ABC的高PO=4,斜高為2
5
,
可知OD=
(2
5
)
2
-42
=2
AD=6
則AB=4
3

底面面積是12
3

中截面面積是
1
4
×12
3
=3
3

故答案為:3
3
點(diǎn)評(píng):本題考查棱錐的結(jié)構(gòu)特征,考查面積比是相似比的平方,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知正三棱錐P-ABC的四個(gè)頂點(diǎn)都在同一球面上,其中底面的三個(gè)頂點(diǎn)在該球的一個(gè)大圓上.若正三棱錐的高為1,則球的半徑為
 
,P,A兩點(diǎn)的球面距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正三棱錐P-ABC中,底面邊長為
3
,高為1,則正三棱錐P-ABC的外接球的表面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若正三棱錐P-ABC的三條側(cè)棱兩兩互相垂直,則該正三棱錐外接球的半徑與側(cè)棱長之比為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正三棱錐P-ABC的底面邊長為a,E、F、G、H分別是PA、AC、BC、PB的中點(diǎn),四邊形EFGH面積記為S(x),則S(x)的取值范圍是
3
a2
12
,+∞)
3
a2
12
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)O是正三棱錐P-ABC的底面△ABC的中心,過O的動(dòng)平面與PC交于S,與PA、PB的延長線分別交于Q、R,則
1
PQ
+
1
PR
+
1
PS
( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案