若拋物線
的焦點與橢圓
的左焦點重合,則
的值為_________
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分12分)如圖:
O方程為
,點
P在圓上,點
D在
x軸上,點
M在
DP延長線上,
O交
y軸于點
N,
.且
(I)求點
M的軌跡
C的方程;
(II)設
,若過
F1的直線交(I)中曲線
C于
A、
B兩點,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知動點
P在曲線
上移動,則點
A(0,– 1)與點
P連線中點的軌跡方程是_____________
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)已知橢圓:
,過坐標原點O作兩條互相垂直的射線,與橢圓分別交于A,B兩點.
(I)求證O到直線AB的距離為定值.
(Ⅱ)求△0AB面積的最大值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
將曲線
上各點的縱坐標縮短到原來的
(橫坐標不變),所得曲線的方程是( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分15分) 已知拋物線C的頂點在原點, 焦點為F(0,1).
(1) 求拋物線C的方程;
(2)在拋物線C上是否存在點P, 使得過點P
的直線交C于另一點Q,滿足PF⊥QF, 且
PQ與C在點P處的切線垂直.若存在,求出
點P的坐標; 若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分13分)
已知拋物線
的頂點在原點,焦點為
,且過點
.
(1)求
t的值;
(2)若直線
與拋物線
只有一個公共點,求實數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
若拋物線
的焦點與橢圓
的右焦點重合,則p的值為( )
A
B
C
D 4
查看答案和解析>>