如果有窮數(shù)列a1,a2,…an(a∈N*)滿(mǎn)足條件:,我們稱(chēng)
其為“對(duì)稱(chēng)數(shù)列”,例如:數(shù)列1,2,3,3,2,1和數(shù)列1,2,3,4,3,2,1都為“對(duì)稱(chēng)數(shù)列”。已知數(shù)列{bn}是項(xiàng)數(shù)不超過(guò)2m(m>1,m∈N*)的“對(duì)稱(chēng)數(shù)列”,并使得1,2,22,……,2m-1依次為該數(shù)列中連續(xù)的前m項(xiàng),則數(shù)列的前2009項(xiàng)和S2009所有可能的取值的序號(hào)為           。
①22009—1   ②2·(22009—1)   ③3×2m-1—22m-2010—1   ④2m+1—22m-2009—1
①③④
,則數(shù)列的前2009項(xiàng)為,所以,①可能;
,若數(shù)列的前2009項(xiàng)為,所以
,③可能;
若數(shù)列的前2009項(xiàng)為,所以
,④可能。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列的首項(xiàng),前n項(xiàng)之和滿(mǎn)足關(guān)系式:.
(1)求證:數(shù)列是等比數(shù)列;
(2)設(shè)數(shù)列的公比為,數(shù)列滿(mǎn)足,且.
(i)求數(shù)列的通項(xiàng);
(ii)設(shè),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列滿(mǎn)足:,其中為數(shù)列的前項(xiàng)和.
(1)試求數(shù)列的通項(xiàng)公式;
(2)設(shè),數(shù)列的前項(xiàng)和為,求證

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

數(shù)列滿(mǎn)足,則( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

) (本題滿(mǎn)分14分) 設(shè)等差數(shù)列{an}的首項(xiàng)a1a,前n項(xiàng)和為Sn
(Ⅰ) 若S1S2,S4成等比數(shù)列,求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ) 證明:n∈N*, Sn,Sn1,Sn2不構(gòu)成等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿(mǎn)分14分)在數(shù)列中,為其前項(xiàng)和,滿(mǎn)足.(I)若,求數(shù)列的通項(xiàng)公式;
(II)若數(shù)列為公比不為1的等比數(shù)列,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分14分)
數(shù)列滿(mǎn)足).
(1)設(shè),求數(shù)列的通項(xiàng)公式;
(2)設(shè),數(shù)列的前項(xiàng)和為,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿(mǎn)分12分)求數(shù)列  ()的前n項(xiàng)和。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在數(shù)列中,若,且對(duì)任意的正整數(shù)都有
的值為  

查看答案和解析>>

同步練習(xí)冊(cè)答案