【題目】設(shè)函數(shù)f(x)=kax﹣a﹣x(a>0且a≠1)是定義域R上的奇函數(shù).
(1)若f(1)>0,試求不等式f(x2+2x)+f(x﹣4)>0的解集;
(2)若f(1)= ,且g(x)=a2x+a﹣2x﹣4f(x),求g(x)在[1,+∞)上的最小值.
【答案】
(1)解:∵f(x)為R上的奇函數(shù),∴f(0)=0,∴k﹣1=0k=1,
∴f(x)=ax﹣a﹣x
∵f(1)>0,∴a﹣a﹣1>0,a>0,∴a>1.
∴f(x)為R上的增函數(shù)
由f(x2+2x)+f(x﹣4)>0得:f(x2+2x)>f(4﹣x)
即:x2+3x﹣4>0x<﹣4或x>1.
即不等式的解集(﹣∞,﹣4)∪(1,+∞).
(2)解:由f(1)= 得a=2,
由(1)可知f(x)為[1,+∞)上的增函數(shù).
f(x)≥f(1)=
所以g(x)=a2x+a﹣2x﹣4f(x)=(f(x)﹣2)2﹣2≥﹣2(當f(x)=2時取等號)
故g(x)在[1,+∞)上的最小值﹣2.
【解析】先利用f(x)為R上的奇函數(shù)得f(0)=0求出k以及函數(shù)f(x)的表達式,(1)利用f(1)>0求出a的取值范圍以及函數(shù)f(x)的單調(diào)性,再把不等式f(x2+2x)+f(x﹣4)>0利用函數(shù)f(x)是奇函數(shù)進行轉(zhuǎn)化,再利用求得的單調(diào)性解不等式即可;(2)先由f(1)= 得a=2,得出函數(shù)f(x)的單調(diào)性,再對g(x)進行整理,整理為用f(x)表示的函數(shù),最后利用函數(shù)f(x)的單調(diào)性以及最值來求g(x)在[1,+∞)上的最小值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在長方體ABCD﹣A1B1C1D1中,AB=BC=1,AA1=2,E為BB1中點.
(1)證明:AC⊥D1E;
(2)求DE與平面AD1E所成角的正弦值;
(3)在棱AD上是否存在一點P,使得BP∥平面AD1E?若存在,求DP的長;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線的極坐標方程為,曲線的參數(shù)方程為,( 為參數(shù)).
(1)將兩曲線化成普通坐標方程;
(2)求兩曲線的公共弦長及公共弦所在的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某連鎖經(jīng)營公司所屬5個零售店某月的銷售額和利潤額資料如表:
商店名稱 | A | B | C | D | E |
銷售額x/千萬元 | 3 | 5 | 6 | 7 | 9 |
利潤額y/百萬元 | 2 | 3 | 3 | 4 | 5 |
(1)畫出銷售額和利潤額的散點圖;
(2)若銷售額和利潤額具有相關(guān)關(guān)系,用最小二乘法計算利潤額y對銷售額x的回歸直線方程;
(3)據(jù)(2)的結(jié)果估計當銷售額為1億元時的利潤額.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=x2﹣ax,g(x)=lnx,h(x)=f(x)+g(x)
(1)若f(x)≥g(x)對于公共定義域內(nèi)的任意x恒成立,求實數(shù)a的取值范圍;
(2)設(shè)h(x)有兩個極值點x1 , x2 , 且x1∈(0, ),若h(x1)﹣h(x2)>m恒成立,求實數(shù)m的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=Asin(ωx+φ)在一個周期內(nèi)的圖象如圖,此函數(shù)的解析式為( )
A.y=2sin(2x+ )??
B.y=2sin(2x+ )??
C.y=2sin( ﹣ )??
D.y=2sin(2x﹣ )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com