設函f(x)是定義在R上的周期為3的奇函數(shù),f(1)<1,f(2)=,則a的取值范圍是   
【答案】分析:先根據(jù)周期性和奇函數(shù)將f(2)化成f(1),然后根據(jù)已知條件建立關系式,解之即可求出實數(shù)a的取值范圍.
解答:解:∵f(x+3)=f(x)
f(-x)=-f(x)
∴f(2)=f(2-3)=f(-1)=-f(1)
又f(1)<1
∴f(2)>-1
,解得a>0或a<-1
故答案為:a>0或a<-1.
點評:本題主要考查了函數(shù)的奇偶性與周期性的綜合應用,周期性和奇偶性都是函數(shù)的整體性質,同時考查了分式不等式的求解,屬中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設函f(x)是定義在R上的周期為3的奇函數(shù),f(1)<1,f(2)=
2a-1a+1
,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)為定義在R上的偶函數(shù),當x≤-1時,y=f(x)的圖象是經過點(-2,0)、斜率為1的射線;又在y=f(x)的圖象中有一部分是頂點在(0,2),且過點(-1,1)的一段拋物線.求函數(shù)f(x)的解析式,畫出流程圖,并編寫一個程序,對每一個輸入的x值,求出相應的函數(shù)值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)為定義在R上的偶函數(shù),當x≤-1時,y=f(x)的圖象是經過點(-2,0)、斜率為1的射線;又在y=f(x)的圖象中有一部分是頂點在(0,2),且過點(-1,1)的一段拋物線.求函數(shù)f(x)的解析式,畫出程序框圖,并編寫一個程序,對每一個輸入的x值,求出相應的函數(shù)值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函f(x)是定義在R上的周期為3的奇函數(shù),f(1)<1,f(2)=數(shù)學公式,則a的取值范圍是________.

查看答案和解析>>

同步練習冊答案