選做題(請考生在以下三個小題中任選一題作答,如果多做,則按所做的第一題評閱記分)
A、(不等式選講)若關(guān)于x的方程x2+4x+|a-1|=0有實根,則實數(shù)a的取值范圍為   
B、(幾何證明選講)如圖,AD是⊙O的切線,AC是⊙O的弦,過C作AD的垂線,垂足為B,CB與⊙O相交于點E,AE平分∠CAB,且AE=2,則AC=     
C、(坐標(biāo)系與參數(shù)方程)已知直線(t為參數(shù))與圓相交于A、B兩點,則|AB|=   
【答案】分析:(A)根據(jù)關(guān)于x的方程x2+4x+|a-1|=0有實根,可得△≥0,解不等式即可求得結(jié)果;
(B)根據(jù)AD為⊙O的切線,得出∠BAE=∠C,又AE平分∠CAB,得出∠BAC=2∠BAE,從而有∠BAE=∠C=30°最后利用特殊的直角三角形即可求出AC的長;
(C)把曲線C的極坐標(biāo)方程化為普通方程,可知曲線是圓,根據(jù)點到直線的距離公式和圓被直線所截得的弦長公式進行計算.
解答:解:A:∵關(guān)于x的方程x2+4x+|a-1|=0有實根,
∴△=16-4(|a-1|)≥0,
即-3≤a≤5,
故答案為:[-3,5].
B:∵AD為⊙O的切線,∴∠BAE=∠C,
∵AE平分∠CAB,∴∠BAC=2∠BAE,
又∵∠C+∠BAC=90°,∴∠BAE=∠C=30°.
則有BE=1,AB=,BC=3,
∴AC=2
故答案為:2
C:l的直角坐標(biāo)方程為 x+2y-1-2=0,
 的直角坐標(biāo)方程為 ,
所以圓心 到直線l的距離
說明直線經(jīng)過圓心,
∴|AB|=4.
故答案為:4.
點評:本題考查直線的參數(shù)方程、圓的極坐標(biāo)方程、與圓有關(guān)的比例線段、絕對值不等式的解法等基礎(chǔ)知識,考查運算求解能力,考查化歸與轉(zhuǎn)化思想,此題應(yīng)用弦切角、解直角三角形的知識,為基礎(chǔ)題型.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)選做題(請考生在以下三個小題中任選一題作答,如果多做,則按所做的第一題評閱記分)
(1)已知曲線C的參數(shù)方程為
x=1+2t
y=at2
(t為參數(shù),a∈R),點M(5,4)在曲線C 上,則曲線C的普通方程為
 

(2)已知不等式x+|x-2c|>1的解集為R,則正實數(shù)c的取值范圍是
 

(3)如圖,PC切圓O于點C,割線PAB經(jīng)過圓心A,PC=4,PB=8,則S△OBC
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)選做題(請考生在以下三個小題中任選一題作答,如果多做,則按所做的第一題評閱記分)
A.(選修4-4坐標(biāo)系與參數(shù)方程)將參數(shù)方程
x=e2+e-2
y=2(e2-e-2)
(e為參數(shù))化為普通方程是
 

B.(選修4-5 不等式選講)不等式|x-1|+|2x+3|>5的解集是
 

C.(選修4-1 幾何證明選講)如圖,在△ABC中,AD是高線,CE是中線,|DC|=|BE|,DG⊥CE于G,且|EC|=8,則|EG|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選做題(請考生在以下三個小題中任選一題作答,如果多做,則按所做的第一題評閱記分)
(1)(不等式選講)已知函數(shù)f(x)=log2(|x-1|+|x-5|-a),當(dāng)函數(shù)f(x)的定義域為R時,則實數(shù)a的取值范圍為
(-∞,4)
(-∞,4)

(2)(幾何證明選講)如圖,AB是半圓O的直徑,點C在半圓上,CD⊥AB,垂足為D,且AD=5DB,設(shè)∠COD=θ,則tanθ的值為
5
2
5
2


(3)(坐標(biāo)系與參數(shù)方程)圓O1和圓O2的極坐標(biāo)方程分別為ρ=4cosθ,ρ=-4sinθ,則經(jīng)過兩圓圓心的直線的直角坐標(biāo)方程為
y=x+2
y=x+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選做題(請考生在以下三個小題中任選一題作答,如果多做,則按所做的第一題評閱記分)
A.(選修4-4坐標(biāo)系與參數(shù)方程)若M,N分別是曲線ρ=2cosθ和ρsin(θ-
π
4
)=
2
2
上的動點,則M,N兩點間的距離的最小值是
2
-1
2
-1

B.(選修4-5 不等式選講)若不等式|x+
1
x
|>|a-2|+1
對于一切非零實數(shù)x均成立,則實數(shù)a的取值范圍為
1<a<3
1<a<3

C.(選修4-1 幾何證明選講)(幾何證明選做題)如圖,圓O的割線PBA過圓心O,弦CD交AB于點E,且△COE~△PDE,PB=OA=2,則PE的長等于
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•渭南三模)選做題(請考生在以下三個小題中任選一題作答,如果多做,則按所做的第一題評閱記分)
A、(不等式選講)若關(guān)于x的方程x2+4x+|a-1|=0有實根,則實數(shù)a的取值范圍為
[-3,5]
[-3,5]

B、(幾何證明選講)如圖,AD是⊙O的切線,AC是⊙O的弦,過C作AD的垂線,垂足為B,CB與⊙O相交于點E,AE平分∠CAB,且AE=2,則AC=
2
3
2
3
 
C、(坐標(biāo)系與參數(shù)方程)已知直線
x=1-2t
y=
3
+t.
(t為參數(shù))與圓ρ=4cos(θ-
π
3
)
相交于A、B兩點,則|AB|=
4
4

查看答案和解析>>

同步練習(xí)冊答案