已知拋物線y2=-x與直線y=k(x+1)交于A、B兩點.
(1)求證:OA⊥OB;
(2)當(dāng)DAOB的面積等于時,求k的值. 

(1)證明見試題解析;(2).

解析試題分析:(1)要證明,可設(shè)出兩點的坐標(biāo)分別為,則,而,從哪里來呢?考慮到兩點在拋物線上,因此,下面的目標(biāo)是求,我們把直線方程與拋物線方程聯(lián)立,消去,得到關(guān)于的二次方程,正是這個二次方程的解,利用韋達定理,可得,從而證得結(jié)論;(2)如果直接利用,則,會發(fā)現(xiàn)很難把這個根式用表示出來,我們換一種思路,直線軸于點,因此分成兩個三角形,從而有,這里,正好能利用(1)結(jié)論中的結(jié)論.
試題解析:(1)由方程組得:
設(shè),由韋達定理得:,
,
,即.4分

(2)設(shè)直線與交于點,則,


.10分
考點:(1)直線與拋物線相交,垂直問題;(2)面積問題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

某校同學(xué)設(shè)計一個如圖所示的“蝴蝶形圖案(陰影區(qū)域)”,其中是過拋物線焦點的兩條弦,且其焦點,點軸上一點,記,其中為銳角.

(1)求拋物線方程;
(2)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知曲線上任意一點到直線的距離是它到點距離的倍;曲線是以原點為頂點,為焦點的拋物線.
(Ⅰ)求,的方程;
(Ⅱ)過作兩條互相垂直的直線,其中相交于點,相交于點,求四邊形面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線與橢圓有公共焦點,且橢圓過點.
(1)求橢圓方程;
(2)點是橢圓的上下頂點,點為右頂點,記過點、、的圓為⊙,過點作⊙ 的切線,求直線的方程;
(3)過橢圓的上頂點作互相垂直的兩條直線分別交橢圓于另外一點,試問直線是否經(jīng)過定點,若是,求出定點坐標(biāo);若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在直角坐標(biāo)系中,為坐標(biāo)原點,如果一個橢圓經(jīng)過點P(3,),且以點F(2,0)為它的一個焦點.
(1)求此橢圓的標(biāo)準(zhǔn)方程;
(2)在(1)中求過點F(2,0)的弦AB的中點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C的中心在坐標(biāo)原點,焦點在x軸上,橢圓C上的點到焦點距離的最大值為3,最小值為1.(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)若直線l:與橢圓C相交于A,B兩點(A,B不是左右頂點),且以AB為直徑的圓過橢圓C的右頂點。求證: 直線l過定點,并求出該定點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知橢圓的離心率為,以橢圓的左頂點為圓心作圓,設(shè)圓與橢圓交于點與點.(12分)

(1)求橢圓的方程;(3分)
(2)求的最小值,并求此時圓的方程;(4分)
(3)設(shè)點是橢圓上異于,的任意一點,且直線分別與軸交于點,為坐標(biāo)原點,求證:為定值.(5分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線的頂點為原點,其焦點到直線的距離為.設(shè)為直線上的點,過點作拋物線的兩條切線,其中為切點.
(Ⅰ)求拋物線的方程;
(Ⅱ)當(dāng)點為直線上的定點時,求直線的方程;
(Ⅲ)當(dāng)點在直線上移動時,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,已知橢圓的離心率,且橢圓C上一點到點Q的距離最大值為4,過點的直線交橢圓于點
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)P為橢圓上一點,且滿足(O為坐標(biāo)原點),當(dāng)時,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案