精英家教網 > 高中數學 > 題目詳情
已知tan(
π
4
+θ)=3
,則sin2θ-2cos2θ+1的值為
1
5
1
5
分析:把已知等式的左邊利用兩角和的正切函數公式及特殊角的三角函數值化簡,得到tanθ的值,然后把所求式子第一項利用二倍角的正弦函數公式化簡,最后一項利用同角三角函數間的基本關系把“1”化為sin2θ+cos2θ,合并后,把分母“1”也化為sin2θ+cos2θ,分子分母同時除以cos2θ,利用同角三角函數間的基本關系弦化切后,將tanθ的值代入即可求出值.
解答:解:∵tan(
π
4
+θ)
=
1+tanθ
1-tanθ
=3,
∴tanθ=
1
2
,
則sin2θ-2cos2θ+1=2sinθcosθ-2cos2θ+sin2θ+cos2θ
=2sinθcosθ-cos2θ+sin2θ
=
2tanθ+tan2θ-1
tan2θ+1

=
1
5

故答案為:
1
5
點評:此題考查了兩角和與差的正切函數公式,二倍角的正弦、余弦函數公式,以及同角三角函數間的基本關系,熟練掌握公式及基本關系是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網(1)已知tan(α+
π
4
)=-3
,求
sinα(3cosα-sinα)
1+tanα
的值.
(2)如圖:△ABC中,|
AC
|=2|
AB
|
,D在線段BC上,且
DC
=2
BD
,BM是中線,用向量證明AD⊥BM.(平面幾何證明不得分)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知tan(
π
4
+α)=2,tanβ=
1
2

(1)求tanα的值;
(2)求
sin(α+β)-2sinαcosβ
2sinαsinβ+cos(α+β)
的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知tan(α+
π
4
)=
1
7
,則tanα=
-
3
4
-
3
4

查看答案和解析>>

科目:高中數學 來源: 題型:

已知tan(α+
π
4
)=2
,則
sinα+cosα
cosα-sinα
的值=
2
2

查看答案和解析>>

同步練習冊答案