對于函數(shù)f(x)=lg|x-2|+1,有下三個(gè)命題:
①f(x+2)是偶函數(shù);
②f(x)在區(qū)間(-∞,2)上是減函數(shù),在區(qū)間(2,+∞)上是增函數(shù);
③f(x+2)-f(x)在區(qū)間(2,+∞)上是增函數(shù).
其中正確命題的序號(hào)是( 。
分析:由f(x)=lg|x-2|+1,知f(x+2)=lg|x|+1是偶函數(shù);由f(x)=lg|x-2|+1=
lg(x-2)+1,x>2
lg(2-x),x<2
,知f(x)在區(qū)間(-∞,2)上是減函數(shù),在區(qū)間(2,+∞)上是增函數(shù);f(x)=lg|x-2|+1,知f(x+2)-f(x)=lg|1+
2
x-2
|在區(qū)間(2,+∞)上是減函數(shù).
解答:解:∵f(x)=lg|x-2|+1,
∴f(x+2)=lg|x+2-2|+1=lg|x|+1是偶函數(shù),
故①正確;
∵f(x)=lg|x-2|+1=
lg(x-2)+1,x>2
lg(2-x),x<2
,
∴f(x)在區(qū)間(-∞,2)上是減函數(shù),在區(qū)間(2,+∞)上是增函數(shù),
故②正確;
∵f(x)=lg|x-2|+1,
f(x+2)=lg|x+2-2|+1=lg|x|+1,
∴f(x+2)-f(x)=lg|x|-lg|x-2|=lg|
x
x-2
|=lg|1+
2
x-2
|在區(qū)間(2,+∞)上是減函數(shù),
故③不正確.
故選A.
點(diǎn)評:本題考查命題的真假判斷,是基礎(chǔ)題.解題時(shí)要認(rèn)真審題,注意對數(shù)函數(shù)的性質(zhì)的靈活運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx-
1
2
ax2+bx
(a>0),且f′(1)=0.
(Ⅰ)試用含有a的式子表示b,并求f(x)的極值;
(Ⅱ)對于函數(shù)f(x)圖象上的不同兩點(diǎn)A(x1,y1),B(x2,y2),如果在函數(shù)圖象上存在點(diǎn)M(x0,y0)(其中x0∈(x1,x2)),使得點(diǎn)M處的切線l∥AB,則稱AB存在“伴隨切線”.特別地,當(dāng)x0=
x1+x2
2
時(shí),又稱AB存在“中值伴隨切線”.試問:在函數(shù)f(x)的圖象上是否存在兩點(diǎn)A、B使得它存在“中值伴隨切線”,若存在,求出A、B的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•婺城區(qū)模擬)對于函數(shù)f(x),若存在區(qū)間M=[a,b],使得{y|y=f(x),x∈M}=M,則稱區(qū)間M為函數(shù)f(x)的-個(gè)“好區(qū)間”.給出下列4個(gè)函數(shù):
①f(x)=sinx;
②f(x)=|2x-1|;
③f(x)=x3-3x;
④f(x)=lgx+l.
其中存在“好區(qū)間”的函數(shù)是
②③④
②③④
.  (填入相應(yīng)函數(shù)的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+2|lnx-1|.
(1)求函數(shù)y=f(x)的最小值;
(2)證明:對任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)對于函數(shù)f(x)圖象上的不同兩點(diǎn)A(x1,y1),B(x2,y2)(x1<x2),如果在函數(shù)f(x)圖象上存在點(diǎn)M(x0,y0)(其中x0∈(x1,x2))使得點(diǎn)M處的切線l∥AB,則稱直線AB存在“伴侶切線”.特別地,當(dāng)x0=
x1+x2
2
時(shí),又稱直線AB存在“中值伴侶切線”.試問:當(dāng)x≥e時(shí),對于函數(shù)f(x)圖象上不同兩點(diǎn)A、B,直線AB是否存在“中值伴侶切線”?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x)=a x2+(b+1)x+b-2(a≠0),若存在實(shí)數(shù) x0,使f( x0)=x0成立,則稱 x0為f(x)的不動(dòng)點(diǎn)
(1)當(dāng)a=2,b=-2時(shí),求f(x)的不動(dòng)點(diǎn);
(2)若對于任何實(shí)數(shù)b,函數(shù)f(x)恒有兩個(gè)相異的不動(dòng)點(diǎn),求實(shí)數(shù)a的取值范圍;
(3)在(2)的條件下判斷直線L:y=ax+1與圓(x-2)2+(y+2)2=4 a2+4的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年河北省唐山一中高二(下)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù)(a>0),且f′(1)=0.
(Ⅰ)試用含有a的式子表示b,并求f(x)的極值;
(Ⅱ)對于函數(shù)f(x)圖象上的不同兩點(diǎn)A(x1,y1),B(x2,y2),如果在函數(shù)圖象上存在點(diǎn)M(x,y)(其中x∈(x1,x2)),使得點(diǎn)M處的切線l∥AB,則稱AB存在“伴隨切線”.特別地,當(dāng)時(shí),又稱AB存在“中值伴隨切線”.試問:在函數(shù)f(x)的圖象上是否存在兩點(diǎn)A、B使得它存在“中值伴隨切線”,若存在,求出A、B的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案