【題目】如圖,曲線與正方形 的邊界相切.

(1)求的值;

(2)設(shè)直線交曲線,,是否存在這樣的曲線,使得, 成等差數(shù)列?若存在,求出實(shí)數(shù)的取值范圍;若不存在,請(qǐng)說明理由.

【答案】(1) (2)

【解析】試題分析:1)由,得(n+mx28mx+16mmn=0,由此利用韋達(dá)定理能求出m+n;(2)若|CA|,|AB||BD|成等差數(shù)列,則|AB|=,由,得(n+mx2+2bmx+mb2mn=0.由此利用根的判別式、韋達(dá)定理、弦長公式,結(jié)合已知條件能求出結(jié)果.

解析:

(Ⅰ)由題,得,

有⊿=

化簡的.

,所以 從而有;

(Ⅱ)由

,即

,

可得,

所以

可得,

從而

所以,即有,符合, 故當(dāng)實(shí)數(shù)的取值范圍是時(shí),存在直線和曲線,使得, 成等差數(shù)列

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,直線與曲線交于兩點(diǎn).

(1)求直線的普通方程和曲線的直角坐標(biāo)方程;

(2)若點(diǎn)的極坐標(biāo)為的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某品牌經(jīng)銷商在一廣場隨機(jī)采訪男性和女性用戶各50名,其中每天玩微信超過6小時(shí)的用戶列為“微信控”,否則稱其為“非微信控”,調(diào)查結(jié)果如下:

微信控

非微信控

合計(jì)

男性

26

24

50

女性

30

20

50

合計(jì)

56

44

100

(1)根據(jù)以上數(shù)據(jù),能否有95%的把握認(rèn)為“微信控”與“性別”有關(guān)?

(2)現(xiàn)從調(diào)查的女性用戶中按分層抽樣的方法選出5人,再隨機(jī)抽取3人贈(zèng)送禮品,記這3人中“微信控”的人數(shù)為試求的分布列和數(shù)學(xué)期望.

參考公式: ,其中.

參考數(shù)據(jù):

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.455

0.708

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位有員工1000名,平均每人每年創(chuàng)造利潤10萬元.為增加企業(yè)競爭力,決定優(yōu)化產(chǎn)業(yè)結(jié)構(gòu),調(diào)整出名員工從事第三產(chǎn)業(yè),調(diào)整后平均每人每年創(chuàng)造利潤為萬元,剩下的員工平均每人每年創(chuàng)造的利潤可以提高

(1)若要保證剩余員工創(chuàng)造的年總利潤不低于原來1000名員工創(chuàng)造的年總利潤,則最多調(diào)整出多少名員工從事第三產(chǎn)業(yè)?

(2)若要保證剩余員工創(chuàng)造的年總利潤不低于原來1000名員工創(chuàng)造的年總利潤條件下,若要求調(diào)整出的員工創(chuàng)造出的年總利潤始終不高于剩余員工創(chuàng)造的年總利潤,則的取值范圍是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為直角梯形, , , , 均為等邊三角形,點(diǎn)的中點(diǎn).

(1)證明:平面平面

(2)若點(diǎn)在線段上且,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,曲線與正方形 的邊界相切.

(1)求的值;

(2)設(shè)直線交曲線,是否存在這樣的曲線使得, , 成等差數(shù)列?若存在,求出實(shí)數(shù)的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域?yàn)?/span>的函數(shù)是奇函數(shù).

1)求a,b的值;

2)判斷函數(shù)的單調(diào)性,并用定義證明;

3)當(dāng)時(shí),恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)當(dāng)時(shí),求函數(shù)在點(diǎn)處的切線方程;

(Ⅱ)當(dāng)時(shí),討論的單調(diào)性;

(Ⅲ)是否存在實(shí)數(shù),對(duì)任意,且恒成立?

若存在,求出的取值范圍;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中, , , , 二面角的大小為.

(1)求證: 平面;

(2)求平面與平面所成的角(銳角)的大;

(3)若的中點(diǎn),求直線與平面所成的角的大小.

查看答案和解析>>

同步練習(xí)冊(cè)答案