設(shè)P是雙曲線x2-
y2
4
=1上除頂點外的任意一點,F(xiàn)1、F2分別是雙曲線的左、右焦點,△PF1F2的內(nèi)切圓與邊F1F2相切于點M,則
F1M
MF2
=( 。
A、5B、4C、2D、1
考點:雙曲線的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:利用雙曲線的定義,結(jié)合△PF1F2的內(nèi)切圓與邊F1F2相切于點M,可得|F1M|-|F2M|=2,利用|F1M|+|F2M|=2
5
,求出|F1M|=
5
+1,|F2M|=
5
-1,即可求出
F1M
MF2
解答: 解:不妨設(shè)P是雙曲線x2-
y2
4
=1右支上一點,則|PF1|-|PF2|=2,
∵△PF1F2的內(nèi)切圓與邊F1F2相切于點M,
∴|F1M|-|F2M|=2,
∵|F1M|+|F2M|=2
5
,
∴|F1M|=
5
+1,|F2M|=
5
-1,
F1M
MF2
=|F1M||F2M|=4,
故選:B.
點評:本題考查直線與圓的位置關(guān)系,考查向量知識的運用,考查雙曲線的定義,正確運用圓的性質(zhì)是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)z=(3+i)•i的實部是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是一個算法的流程圖,最后輸出的x=(  )
A、-4B、-7
C、-10D、-13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

學(xué)校要從高一300人,高二200人,高三100人中,分層抽樣,抽調(diào)12人去參加環(huán)保志愿者,則高三應(yīng)參加的人數(shù)為(  )人.
A、8B、6C、4D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x∈Z,n∈N*,定義
M
n
x
=x(x+1)(x+2)…(x+n-1),則函數(shù)f(x)=
M
11
x-5
的奇偶性是( 。
A、f(x)為偶函數(shù),不是奇函數(shù)
B、f(x)為奇函數(shù),不是偶函數(shù)
C、f(x)既是偶函數(shù),又是奇函數(shù)
D、f(x)既不是偶函數(shù),又不是奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若集合A={x||x|+x>0},B={x|x2-5x+6≥0},則A∩B=(  )
A、{x|2≤x≤3}
B、{x|0≤x≤2或x≥3}
C、{x|0<x≤2或x≥3}
D、{x|x≥3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,點D是BC的中點,過點D的直線分別交直線AB、AC于E、F兩點,若
AB
=λ
AE
,
AC
AF
(λ>0,μ>0),則
1
λ
+
4
μ
的最小值為(  )
A、
9
2
B、
13
2
C、
15
2
D、
17
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在復(fù)平面內(nèi),復(fù)數(shù)z和
2i
2-i
表示的點關(guān)于虛軸對稱,則復(fù)數(shù)z=(  )
A、
2
5
+
4
5
i
B、
2
5
-
4
5
i
C、-
2
5
+
4
5
i
D、-
2
5
-
4
5
i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(0,-1),向量
b
=(cosx,2cos2
π
3
-
x
2
)),其中0<x<
3
,試求|
a
+
b
|的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案