【題目】已知橢圓的離心率為,右焦點(diǎn)為圓的圓心,且圓軸所得弦長(zhǎng)為4.

(1)求橢圓與圓的方程;

(2)若直線與曲線,都只有一個(gè)公共點(diǎn),記直線與圓的公共點(diǎn)為,求點(diǎn)的坐標(biāo).

【答案】(1) 橢圓的方程為 ;圓的方程為. (2)

【解析】

1)由橢圓的離心率為,右焦點(diǎn)為圓C2:(x12+y2r2的圓心,列出方程組,求出ab,c,由此能求出橢圓的方程;由圓y軸所得弦長(zhǎng)為4,得22+125,由此能求出圓的方程.(2)設(shè)直線l的方程為ykx+m,推導(dǎo)出4k2m22km5,由,得(3+4k2x2+8kmx+4m2120,由此利用根的判別式、直線方程、圓、橢圓性質(zhì),結(jié)合已知條件能求出直線l與圓的公共點(diǎn)A的坐標(biāo).

(1)由題意知:解得

,

所以橢圓的方程為

因?yàn)閳A軸所得弦長(zhǎng)為4,所以,

所以圓的方程為

(2)設(shè)直線的方程為,則

,

,

因?yàn)橹本與曲線只有一個(gè)公共點(diǎn),所以

,

化簡(jiǎn),得

①②聯(lián)立,解得

解得

解得,

故直線與圓的公共點(diǎn)的坐標(biāo)為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)當(dāng)時(shí),函數(shù)恰有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)的值;

2)當(dāng)時(shí),

若對(duì)于任意,恒有,求的取值范圍;

,求函數(shù)在區(qū)間上的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】黨的十八大以來(lái),我國(guó)精準(zhǔn)扶貧已經(jīng)實(shí)施了六年,我國(guó)貧困人口從2012年的9899萬(wàn)人,減少到2018年的1660萬(wàn)人,2019年將努力實(shí)現(xiàn)減少貧困人口1000萬(wàn)人以上的目標(biāo),力爭(zhēng)2020年在現(xiàn)行標(biāo)準(zhǔn)下,農(nóng)村貧困人口全部脫貧,貧困縣全部脫貧摘帽.某市為深入分析該市當(dāng)前扶貧領(lǐng)域存在的突出問(wèn)題,市扶貧辦近三年來(lái),每半年對(duì)貧困戶(hù)(用表示,單位:萬(wàn)戶(hù))進(jìn)行取樣,統(tǒng)計(jì)結(jié)果如圖所示,從20166月底到20196月底的共進(jìn)行了七次統(tǒng)計(jì),統(tǒng)計(jì)時(shí)間用序號(hào)表示,例如:201612月底(時(shí)間序號(hào)為2)貧困戶(hù)為5.2萬(wàn)戶(hù).

(1)求關(guān)于的線性回歸方程,并預(yù)測(cè)到202012月底,該市能否實(shí)現(xiàn)貧困戶(hù)全部脫貧;

(2)為盡快打贏脫貧攻堅(jiān)戰(zhàn),該市扶貧辦在20196月底時(shí),對(duì)全市貧困戶(hù)隨機(jī)抽取了100戶(hù)貧困戶(hù),對(duì)每個(gè)家庭最主要經(jīng)濟(jì)收入來(lái)源進(jìn)行抽樣調(diào)查,統(tǒng)計(jì)結(jié)果如圖.并決定據(jù)此選派一批農(nóng)業(yè)技術(shù)人員對(duì)全市所有貧困戶(hù)中,家庭最主要經(jīng)濟(jì)收入來(lái)源為養(yǎng)殖收入和種植收入的貧困戶(hù)進(jìn)行對(duì)口幫扶,每一名農(nóng)業(yè)技術(shù)人員對(duì)口幫扶貧困戶(hù)90戶(hù),則該市應(yīng)分別安排多少農(nóng)業(yè)技術(shù)人員對(duì)家庭最主要經(jīng)濟(jì)收入來(lái)源為養(yǎng)殖收入和種植收入的貧困戶(hù)進(jìn)行對(duì)口幫扶?

附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:

,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線C的極坐標(biāo)方程為ρ2.

(1)若以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,求曲線C的直角坐標(biāo)方程;

(2)P(x,y)是曲線C上的一個(gè)動(dòng)點(diǎn),求3x4y的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線 ,過(guò)直線上任一點(diǎn)向拋物線引兩條切線(切點(diǎn)為,且點(diǎn)軸上方).

(1)求證:直線過(guò)定點(diǎn),并求出該定點(diǎn);

(2)拋物線上是否存在點(diǎn),使得

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿(mǎn)分12分)

如圖,四棱錐的底面為菱形,平面,

分別為的中點(diǎn),

)求證:平面平面

)求平面與平面所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),函數(shù)是區(qū)間上的減函數(shù).

(1)求的最大值;

(2)若上恒成立,求的取值范圍;

(3)討論關(guān)于的方程的根的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于函數(shù)有下述四個(gè)結(jié)論:①若,則;②的圖象關(guān)于點(diǎn)對(duì)稱(chēng);③函數(shù)上單調(diào)遞增;④的圖象向右平移個(gè)單位長(zhǎng)度后所得圖象關(guān)于軸對(duì)稱(chēng).其中所有正確結(jié)論的編號(hào)是( )

A.①②④B.①②C.③④D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】廟會(huì)是我國(guó)古老的傳統(tǒng)民俗文化活動(dòng),又稱(chēng)“廟市”或 “節(jié)場(chǎng)”.廟會(huì)大多在春節(jié)、元宵節(jié)等節(jié)日舉行.廟會(huì)上有豐富多彩的文化娛樂(lè)活動(dòng),如“砸金蛋”(游玩者每次砸碎一顆金蛋,如果有獎(jiǎng)品,則“中獎(jiǎng)”).今年春節(jié)期間,某校甲、乙、丙、丁四位同學(xué)相約來(lái)到某廟會(huì),每人均獲得砸一顆金蛋的機(jī)會(huì).游戲開(kāi)始前,甲、乙、丙、丁四位同學(xué)對(duì)游戲中獎(jiǎng)結(jié)果進(jìn)行了預(yù)測(cè),預(yù)測(cè)結(jié)果如下:

甲說(shuō):“我或乙能中獎(jiǎng)”; 乙說(shuō):“丁能中獎(jiǎng)”;

丙說(shuō):“我或乙能中獎(jiǎng)”; 丁說(shuō):“甲不能中獎(jiǎng)”.

游戲結(jié)束后,這四位同學(xué)中只有一位同學(xué)中獎(jiǎng),且只有一位同學(xué)的預(yù)測(cè)結(jié)果是正確的,則中獎(jiǎng)的同學(xué)是( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案