若二次函數(shù)f(x)=ax2+bx+c(a≠0)滿足f(x+1)-f(x)=2x,且f(0)=1.
(1)求f(x)的解析式;
(2)若在區(qū)間[-1,1]上,不等式f(x)>2x+m恒成立,求實(shí)數(shù)m的取值范圍.
分析:(1)由二次函數(shù)可設(shè)f(x)=ax2+bx+c(a≠0),由f(0)=1求得c的值,由f(x+1)-f(x)=2x可得a,b的值,即可得f(x)的解析式;
(2)欲使在區(qū)間[-1,1]上不等式f(x)>2x+m恒成立,只須x2-3x+1-m>0在區(qū)間[-1,1]上恒成立,也就是要x2-3x+1-m的最小值大于0,即可得m的取值范圍.
解答:解:(1)由題意可知,f(0)=1,解得,c=1,
由f(x+1)-f(x)=2x.可知,[a(x+1)2+b(x+1)+1]-(ax2+bx+1)=2x,
化簡(jiǎn)得,2ax+a+b=2x,
2a=2
a+b=0
,
∴a=1,b=-1.
∴f(x)=x2-x+1;
(2)不等式f(x)>2x+m,可化簡(jiǎn)為x2-x+1>2x+m,
即x2-3x+1-m>0在區(qū)間[-1,1]上恒成立,
設(shè)g(x)=x2-3x+1-m,則其對(duì)稱軸為x=
3
2
,
∴g(x)在[-1,1]上是單調(diào)遞減函數(shù).
因此只需g(x)的最小值大于零即可,
g(x)min=g(1),
∴g(1)>0,
即1-3+1-m>0,解得,m<-1,
∴實(shí)數(shù)m的取值范圍是m<-1.
點(diǎn)評(píng):本題主要考查了利用待定系數(shù)法求解二次函數(shù)的解析式,以及函數(shù)的恒成立與函數(shù)的最值求解的相互轉(zhuǎn)化,主要涉及單調(diào)性在函數(shù)的最值求解中的應(yīng)用.屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若二次函數(shù)f(x)=ax2-4x+c的值域?yàn)閇0,+∞),則
a
c2+4
+
c
a2+4
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若二次函數(shù)f(x)=x2+bx+c滿足f(2)=f(-2),且函數(shù)的f(x)的一個(gè)零點(diǎn)為1.
(Ⅰ) 求函數(shù)f(x)的解析式;
(Ⅱ)對(duì)任意的x∈[
12
,+∞)
,4m2f(x)+f(x-1)≥4-4m2恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若二次函數(shù)f (x)=ax2+bx+c(a≠0)的部分對(duì)應(yīng)值如下所示:
x -2 1 3
f (x) 0 -6 0
則不等式f (x)<0的解集為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若二次函數(shù)f(x)=ax2+bx+1(a,b為實(shí)數(shù)且x∈R).
(1)若函數(shù)f(x)為偶函數(shù),且滿足f(x)=2x有兩個(gè)相等實(shí)根,求a,b的值;
(2)若f(-1)=0,且函數(shù)f(x)的值域?yàn)閇0,+∞),求函數(shù)f(x)的表達(dá)式;
(3)在(2)的條件下,當(dāng)x∈[-2,2]時(shí),g(x)=f(x)-kx是單調(diào)函數(shù),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)若二次函數(shù)f(x)=ax2+bx的導(dǎo)函數(shù)f′(x)的圖象如圖所示,則二次函數(shù)f(x)的頂點(diǎn)在(  )
A、第四象限B、第三象限C、第二象限D、第一象限

查看答案和解析>>

同步練習(xí)冊(cè)答案