【題目】已知{an}是等差數(shù)列,{bn}是等比數(shù)列,且b2=3,b3=9,a1=b1,a14=b4.

(1)求{an}的通項公式;

(2)設(shè)cn=an+bn,求數(shù)列{cn}的前n項和.

【答案】見解析

【解析】

解:(1)設(shè)等比數(shù)列{bn}的公比為q,

則q==3,

∴b1=1,b4=b3q=27,

∴bn=3n-1(n=1,2,3,…).

設(shè)等差數(shù)列{an}的公差為d.

∵a1=b1=1,a14=b4=27,

∴1+13d=27,

即d=2.

∴an=2n-1(n=1,2,3,…).

(2)由(1)知an=2n-1,bn=3n-1

因此cn=an+bn=2n-1+3n-1.

從而數(shù)列{cn}的前n項和

Sn=1+3+…+(2n-1)+1+3+…+3n-1=n2.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)若的解集為,求實數(shù), 的值;

(2)當時,解關(guān)于的不等式

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) 為自然對數(shù)的底數(shù)).

(1)若函數(shù)的圖象在處的切線方程為,求 的值;

(2)若時,函數(shù)內(nèi)是增函數(shù),求的取值范圍;

(3)當時,設(shè)函數(shù)的圖象與函數(shù)的圖象交于點、,過線段的中點軸的垂線分別交、于點、,問是否存在點,使處的切線與處的切線平行?若存在,求出的橫坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知

(1)當時,求的值域;

(2)若b為正實數(shù),的最大值為M,最小值為m,且滿足,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在△ABC中,角A,B,C所對的邊分別為a,b,c,且2S△ABC·.

(1)求角B的大。

(2)若b=2,求a+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個正方體的平面展開圖及該正方體直觀圖的示意圖如圖所示,在正方體中,設(shè)BC的中點為M,GH的中點為N。

(1)請將字母F,G,H標記在正方體相應的頂點處(不需說明理由);

(2)證明:直線MN∥平面BDH;

(3)過點M,N,H的平面將正方體分割為兩部分,求這兩部分的體積比.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),以該直角坐標系的原點為極點, 軸的正半軸為極軸的極坐標系下,曲線的方程為.

1)求曲線的普通方程和曲線的直角坐標方程;

2)設(shè)曲線和曲線的交點為、,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)求和函數(shù)的極值;

(2)若關(guān)于的方程有3個不同實根,求實數(shù)的取值范圍;

(3)直線為曲線的切線,且經(jīng)過原點,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=m-|x-1|-|x-2|,m∈R,且f(x+1)≥0的解集為[0,1].

(1)求m的值;

(2)若a,b,c,x,y,z∈R,且x2+y2+z2=a2+b2+c2=m,求證:ax+by+cz≤1.

查看答案和解析>>

同步練習冊答案