若關(guān)于x,y,z的線(xiàn)性方程組增廣矩陣變換為
100-2
003m
0-20n
,方程組的解為
x=-2
y=4
z=1
,則m•n=
 
考點(diǎn):幾種特殊的矩陣變換
專(zhuān)題:矩陣和變換
分析:本題利用增廣矩陣得到相應(yīng)的三元一次方程組,通過(guò)方程組的解,求出相關(guān)參數(shù)m、n的值,得到本題結(jié)論.
解答:解:∵關(guān)于x,y,z的線(xiàn)性方程組增廣矩陣變換為
100-2
003m
0-20n
,
x=-2
3z=m
-2y=n
,
∵方程組的解為
x=-2
y=4
z=1
,
m=3z=3
n=-2y=-8

∴m•n=-24.
故答案為-24.
點(diǎn)評(píng):本題考查的是增廣矩陣的應(yīng)用,要求正確理解增廣矩陣的意義,準(zhǔn)確進(jìn)行計(jì)算,本題難度不大,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有一段“三段論”推理是這樣的:“對(duì)于可導(dǎo)函數(shù)f(x),如果f′(x0)=0,那么x=x0是函數(shù)f(x)的極值點(diǎn);因?yàn)楹瘮?shù)f(x)=x3在x=0處的導(dǎo)數(shù)值f′(0)=0,所以x=0是函數(shù)f(x)=x3的極值點(diǎn).”以上推理中
(1)大前提錯(cuò)誤
(2)小前提錯(cuò)誤
(3)推理形式正確
(4)結(jié)論正確
你認(rèn)為正確的序號(hào)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

使得(3x2+
2
x3
n(n∈N+)的展開(kāi)式中含有常數(shù)項(xiàng)的最小的n=( 。
A、3B、5C、6D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,AB為⊙O的弦,C是弧AB的中點(diǎn),過(guò)點(diǎn)B作直線(xiàn)BD,連接CD交AB于點(diǎn)N,若∠CDB=30°,則∠CNB=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
.
2cosxsinx
sinx2cosx
.
的最小正周期為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知矩陣A的逆矩陣A-1=
-
1
4
3
4
1
2
-
1
2
,求矩陣A的特征值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在極坐標(biāo)系中,過(guò)點(diǎn)(2,
π
6
)且垂直于極軸的直線(xiàn)的極坐標(biāo)方程是( 。
A、ρ=
3
sinθ
B、ρ=
3
cosθ
C、ρsinθ=
3
D、ρcosθ=
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)是定義在(0,+∞)上的函數(shù),且f(x)>0,對(duì)任意a>0,b>0,若經(jīng)過(guò)點(diǎn)(a,f(a)),(b,-f(b))的直線(xiàn)與x軸的交點(diǎn)為(c,0),則稱(chēng)c為關(guān)于函數(shù)f(x)的平均數(shù),記為Mf(a,b),例如,當(dāng)f(x)=1(x>0)時(shí),可得Mf(a,b)=c=
a+b
2
,即Mf(a,b)為a,b的算術(shù)平均數(shù).
(1)當(dāng)f(x)=
 
(x>0)時(shí),Mf(a,b)為a,b的幾何平均數(shù);
(2)當(dāng)f(x)=
 
(x>0)時(shí),Mf(a,b)為a,b的調(diào)和平均數(shù)
2ab
a+b
;
(以上兩空各只需寫(xiě)出一個(gè)符合要求的函數(shù)即可)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知集合,則(    )
.          .              .             .

查看答案和解析>>

同步練習(xí)冊(cè)答案