已知,試比較的大小.

答案:略
解析:

由于給出的條件是,所以分兩種情形討論即可.

解:∵,

,

當(dāng)時,

,且p1,

,即

當(dāng)時,∵,

,∴


提示:

(1)本題實質(zhì)上是同底數(shù)冪大小的比較,因此要利用函數(shù)的單調(diào)性,首先確定兩個指數(shù)的大小,再利用單調(diào)性得出函數(shù)值大小.(2)在確定兩個指數(shù)大小時,用了作差法和分類討論思想.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012年江蘇省常州中學(xué)高考沖刺復(fù)習(xí)單元卷:函數(shù)(解析版) 題型:解答題

已知函數(shù)f(x)的定義域為[0,1],且同時滿足:①f(1)=3;②f(x)≥2對一切x∈[0,1]恒成立;③若x1≥0,x2≥0,x1+x2≤1,則f(x1+x2)≥f(x1)+f(x2)-2,
(Ⅰ)求函數(shù)f(x)的最大值和最小值;
(Ⅱ)試比較的大小;
(Ⅲ)某同學(xué)發(fā)現(xiàn):當(dāng)(n∈N)時,有f(x)<2x+2,由此他提出猜想:對一切x∈(0,1],都有f(x)<2x+2,請你判斷此猜想是否正確,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2007年江蘇省蘇錫常鎮(zhèn)四市高考數(shù)學(xué)一模試卷(解析版) 題型:解答題

已知函數(shù)f(x)的定義域為[0,1],且同時滿足:①f(1)=3;②f(x)≥2對一切x∈[0,1]恒成立;③若x1≥0,x2≥0,x1+x2≤1,則f(x1+x2)≥f(x1)+f(x2)-2,
(Ⅰ)求函數(shù)f(x)的最大值和最小值;
(Ⅱ)試比較的大。
(Ⅲ)某同學(xué)發(fā)現(xiàn):當(dāng)(n∈N)時,有f(x)<2x+2,由此他提出猜想:對一切x∈(0,1],都有f(x)<2x+2,請你判斷此猜想是否正確,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆浙江省高二下期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)

(1)討論函數(shù)的單調(diào)性;

(2)若函數(shù)的最小值為,求的最大值;

(3)若函數(shù)的最小值為定義域內(nèi)的任意兩個值,試比較  的大。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年湖北省高三10月月考理科數(shù)學(xué)試題 題型:解答題

(本小題滿分14分)

已知函數(shù)f(x)的定義域為,且同時滿足:①f(1)=3;②對一切恒成立;③若,,,則

①求函數(shù)f(x)的最大值和最小值;

②試比較 的大;

③某同學(xué)發(fā)現(xiàn):當(dāng)時,有,由此他提出猜想:對一切,都有,請你判斷此猜想是否正確,并說明理由.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆安徽省高一元月文理分班考試數(shù)學(xué) 題型:解答題

 

(13分,理科做)已知函數(shù)的定義域為,且同時滿足:①;②恒成立;③若,則有

(1)試求函數(shù)的最大值和最小值;

(2)試比較的大小N);

(3)某人發(fā)現(xiàn):當(dāng)x=(nÎN)時,有f(x)<2x+2.由此他提出猜想:對一切xÎ(0,1,都有,請你判斷此猜想是否正確,并說明理由.

 

 

查看答案和解析>>

同步練習(xí)冊答案